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Abstract

Humans exhibit garden path effects: When peo-
ple read temporarily structurally ambiguous sen-
tences, they slow down when the structure is disam-
biguated in favor of the less preferred alternative.
One prominent explanation of this, surprisal the-
ory (Hale, 2001; Levy, 2008), proposes that slow
downs like those in garden path sentences is due to
the (un)predictability of each word in context. van
Schijndel and Linzen (2021) find that estimates of
the cost of word predictability derived from LSTM
language models severely underestimate the mag-
nitude of garden path effects. In this work, we
consider whether this underestimation is due to the
underweighting of the structural factors in language
models’ estimates of word predictability relative
to humans. We propose a method for estimating
syntactic predictability from a language model, al-
lowing us to weigh the cost of lexical and syntactic
predictability independently. We find that treating
syntactic predictability independently from word
predictability results in larger estimates of garden
path effects than models with only word predictabil-
ity. However, even with independently weighted
syntactic predictability, surprisal-based models still
greatly underestimate the magnitude of garden path
effects seen in humans, suggesting that there are
factors other than predictability at play in the pro-
cessing cost of garden path sentences.

1 Introduction

Readers exhibit garden path effects: When shown
a temporarily syntactically ambiguous sentence,
readers tend to slow down when the sentence is
disambiguated in favor of the less preferred parse.
For example, a participant who reads the sentence
fragment

(1) The suspect sent the file ...

a. ...to the lawyer.

b. ...deserved further. investigation

can construct a partial parse in at least two distinct
ways: in one reading, the verb sent acts as the main
verb of the sentence, and the rest of the sentence
may be an additional argument to sent (as in 1a).
However, another, less likely reading has sent the
file acting as a modifier in a complex subject that
still requires an additional verb phrase to form a
complete sentence (e.g.., in 1b). Prior work has
demonstrated that regions such as deserved further
investigation, which disambiguate these temporar-
ily ambiguous sentences in favor of the modifier
parse, are read slower than that same words would
be in an unambiguous version of sentence such as

(2) The suspect who was sent the file deserved
further investigation.

where the presence of who was signals to a reader
that sent the file acts as a modifier (Frazier and
Fodor, 1978).

One account of this phenomenon, surprisal the-
ory (Hale, 2001; Levy, 2008), suggests that readers
maintain a probabilistic representation of all possi-
ble parses of the input as they process the sentence
incrementally. Processing difficulty is then the cost
associated with updating this representation, which
is directly proportional to the negative log prob-
ability, or surprisal, of the newly observed mate-
rial under the reader’s model of upcoming words.
This model predicts that the slowdown associated
with garden path sentences can be entirely cap-
tured by the differences in surprisal between the
disambiguating region in ambiguous garden path
sentences and its counterpart in an unambiguous
sentence.

van Schijndel and Linzen (2021) test this hypoth-
esis directly, estimating the surprisals associated
with garden path sentences using LSTM language
models (LMs) trained over large natural language



corpora. They then leverage the claim that pre-
dictability should be proportional to processing
difficulty for all sentences to estimate a conversion
factor between surprisals and reading times over
non-garden path sentences. Using the results of
this conversion, van Schijndel and Linzen (2021)
find that surprisal theory, paired with the surprisals
estimated by their models, severely underestimates
the magnitude of the garden path effect for three
garden path constructions. Moreover, the predicted
reading times do not correctly predict the differ-
ences in the magnitudes of the average garden path
effect for each construction, suggesting that any sin-
gle set of conversion factors between surprisal and
reading times would be unable to correctly predict
the magnitude of the garden path effect in all three
constructions. From this result, we can draw one
of two conclusions: either (1) a strong version of
surprisal theory cannot account for garden path ef-
fects, or (2) the estimates of predictability derived
from LSTM LMs do not capture some relevant
properties of garden path sentences.

In this work, we will investigate the latter possi-
bility. In particular, we seek to determine whether
the gap between the magnitude of garden path ef-
fects in humans and the magnitude that surprisal
theory predicts from LM predictability estimates is
due to a mismatch between how humans and LMs
weigh two contributors to word-level surprisal: syn-
tactic and lexical predictability. That is, the task of
predicting the next word in large natural corpora
may underestimate the importance of predicting up-
coming syntactic structure to human readers (i.e.,
weigh lexical factors on predictability much more
heavily than syntactic factors). In this scenario,
since garden paths are the product of unpredictable
syntactic structure rather than unpredictable lexical
items, using a model’s predictability estimate for
the next word would lead to the underestimation of
garden path effects that we see. If this is the case,
this gap can be bridged by isolating the surprisal
associated with the syntactic structure implied by
the next word from word-level predictability, as
shown in figure 1, and weighing the two factors
independently of our model’s language modeling
objective. This follows prior work on syntactic (or
unlexicalized) surprisal primarily in the context of
symbolic parsers, where the probability of a struc-
ture and particular lexical item can be easily disen-
tangled (Demberg and Keller, 2008; Roark et al.,
2009). While past work has demonstrated that that

[ ]
Three girls trying to
save up for a trip...

Syntactic Surprisal

Owls.a re more flexible...

[ ]
The newfound microbes were...
Lexical Surprisal "

Figure 1: A depiction of the relationship between syn-
tactic and lexical surprisal. Some words (are) are
highly predictable in all respects. Others are unpre-
dictable due to the syntactic structures they suggest
(trying), and should earn a high syntactic and lexical
surprisal. Words like microbes, on the other hand, ap-
pear in predictable syntactic environments, but are un-
predictable due to their infrequency. Words like this
should earn low syntactic surprisals despite having a
high lexical surprisal. Since words that appear in un-
predictable syntactic environments are necessarily un-
predictable themselves, no words have high syntactic
surprisal and low lexical surprisal.

unlexicalized suprisal from symbolic parsers corre-
lates with measures of human processing difficulty
(Demberg and Keller, 2008), simple recurrent neu-
ral networks trained to predict sequences of part-of-
speech tags have been shown to track processing
difficulty even more strongly (Frank, 2009).

We extend this line of work by considering LMs
that are additionally trained to estimate the likeli-
hood of the next word’s supertag under the Com-
binatory Categorial Grammar (CCG) framework.
Such supertags can be viewed as enriched part-
of-speech tags that encode syntactic information
about how a particular word can be combined with
its local environment. We then define syntactic sur-
prisal in terms of the likelihood of the next word’s
CCG supertag, and propose a method of estimat-
ing that likelihood using our modified LMs. We
validate our formulation of syntactic surprisal by
demonstrating that it captures syntactic processing
difficulty in garden path sentences while, crucially,
not tracking unpredictability that is due to low fre-
quency lexical items. Following van Schijndel and
Linzen (2021), we then use the syntactic and lex-
ical surprisal values derived from those models
to predict reading times for three types of garden
path sentences. We find that the addition of our
estimates of syntactic surprisal as a separate pre-



dictor does not substantially improve the ability of
surprisal theory to account for garden path effects.
Finally, we discuss the implications of this find-
ing on surprisal theory and single-stage models of
syntactic processing.

2 Computing Syntactic Surprisal

Our goal is to evaluate whether a measure of syntac-
tic surprisal can help account for the magnitude of
garden path effects. In order to do so, we will need
a way to estimate syntactic surprisal in a manner
that both captures our intuitive notions — an incre-
mental representation of the predictability of the
sentence’s syntactic structure suggested by the next
word — while being relatively simple to estimate.
For our purposes, we will define syntactic surprisal
in terms of the predictability of the next word’s su-
pertag under the Combinatory Categorial Grammar
(CCQG) formalism (Steedman, 1987). That is, the
syntactic surprisal of a word wy, is

Surpsyn = *log(P(Cn | wy, "'7wn71))5 (1)

where c,, is the supertag of the n-th word under
the CCG formalism. A CCG supertag encodes
how a particular token combines with adjacent con-
stituents in that token’s sentence’s syntactic struc-
ture. For example, a token with the tag S\NP com-
bines with a constituent with the tag NP to its left to
form a constituent with the tag S. Similarly, a token
with the tag (S\NP)/NP combines with a constituent
with the tag NP to its right to form a constituent
with the tag S\NP. Since a full supertagging of a
sentence often allows only one valid parse, the task
of predicting a sentence’s supertags has been de-
scribed as “almost parsing" (Bangalore and Joshi,
1999). Thus we see incremental CCG supertagging
as almost incremental parsing, and the surprisal of
each word’s supertag under a probabilistic incre-
mental supertag predictor as a reasonable proxy
for syntactic surprisal. We compare this syntactic
surprisal measure with the standard token surprisal
measure, which we refer to as lexical surprisal:

SUrp,x = — log(P(wy, | wi,...,wp—1)). (2)

Note that what we call lexical surprisal captures all
factors that contribute to a token’s predictability,
including syntactic ones: Since certain tokens can
only appear in specific syntactic contexts, the prob-
ability that the next word is in one of those contexts
affects the predictability of any particular word.

In order to compute syntactic and lexical sur-
prisals for our materials, we need models that pre-
dict, given a left context, both the next token (as a
standard LM does) and the next token’s supertag (to
compute syntactic surprisal). To do this, we train
a model with both a language modeling and CCG
supertagging objective and estimate the distribu-
tion over the next word’s tag by marginalizing over
the identity of the next word itself. Formally, for a
sequence of words wy, ..., w, € W with supertags
Cl, ..., cp € C, our model estimates the probability
of the next word given all observed words, p,,, ., =
P(wp41 | wi,...,wy), and the probability of the
most recent word’s supertag given all currently ob-
served words, pe, |w, = P(cy | wi,...,wy). We
then infer the distribution over the next word’s su-
pertag as

P(enia|w,ywp) = ) Pepyalws P
wy €W

3)

If we knew the supertag of the next word ¢y, 1,
we can then compute the surprisal of that supertag
by computing — log P(¢p41 | wi, ..., wy). Unlike
in the case of lexical surprisal, however, a word’s
supertag is often ambiguous during incremental
processing. Consider the verb gathered in the fol-
lowing examples:

(3) The squirrels gathered near the tree.

(4) The squirrels gathered a few acorns.

In (3), we would want to assign gathered the su-
pertag S\NP, indicating that gathered is used in
its intransitive sense (a group of squirrels came to-
gether as a group) and takes no direct object. In
(4), on the other hand, we would want to assign
the supertag (S \NP)/NP to indicate that in this sen-
tence gathered is used in its transitive sense and
takes the noun phrase a few acorns as a direct ob-
ject. When processing this sentence incrementally,
a reader must maintain this uncertainty over the
appropriate supertag for a word past the point at
which they’ve learned the word’s identity. As a
result, a measure of syntactic surprisal that aims
to model processing difficulty at a particular word
should similarly take into account uncertainty over
the supertag of a word even after the word itself
has been processed.

Since our models are trained as supertaggers
in addition to being LMs, we use the models’ su-
pertagging distribution (pe., |, ) to estimate the un-



certainty over a word’s tag once it has been ob-
served. We thus compute surprisal after marginaliz-
ing the probability of the next word’s supertag we
computed in (3) over our uncertainty over that next
word’s supertag:

pcn+1|wn = P(Cn+1 | wi, ..., wn) (4)
SUTPsyn = — log Z pc;+1|wnpcn+1\wn+1
ci1€C
)

2.1 Model Architecture and Training

We train four LSTM LMs, differing only in their
random seed, on both a language modeling and
CCG supertagging objective.

Following Gulordava et al. (2018), the encoder
is a two-layer LSTM with 650 units per layer. Each
decoder consists of a single linear layer and a soft-
max classifier. Models were trained on supertag-
ging using CCGBank (Hockenmaier and Steedman,
2007), a set of CCG annotations for the Wall Street
Journal section of the Penn Treebank (Marcus et al.,
1993), and on language modeling over a concatena-
tion of the Wall Street Journal portion of the Penn
Treebank and the 80 million words of Wikipedia
used in Gulordava et al. (2018). Language model-
ing and supertagging losses were weighted equally
during training.

Models achieved language modeling perplexities
ranging from 74.76 to 75.70 on the Gulordava et al.
(2018) test set, and assigned the highest likelihood
to the correct CCG supertag in the CCGBank test
set between 84.1% and 84.5% of the time.

2.2 Experimental data

We evaluate our model over a subset of the Syn-
tactic Ambiguity Processing (SAP) Benchmark
(Huang et al., 2022), a dataset containing self-paced
reading data from 2000 native English speakers
over a variety of constructions as well as a number
of filler sentences. The large size of the dataset
allows us to get precise estimates of the magnitude
of the garden path effect for each of the three types
of garden path sentences it contains. We describe
each of the three garden path constructions below.

(5) The suspect sent the file deserved further
investigation given the new evidence.

(6) The suspect who was sent the file deserved
further investigation given the new evi-
dence.

Main Verb/Reduced Relative (MVRR): In (5),
before reading the word deserved, the reader can
interpret sent the file either as a main verb and di-
rect object (where the subject has sent the file) or
as a reduced relative clause (where the subject has
had the file sent to them). This is disambiguated in
favor of the reduced relative clause reading by the
next word, deserved, which is the true main verb
of the complete sentence. We can measure the pro-
cessing difficulty incurred by this disambiguation
by comparing the reading times at deserved in (5)
with those at deserved in (6), where the relative
clause who was sent the file is unreduced and thus
unambiguous.

(7) The suspect showed the file deserved fur-
ther investigation during the murder trial.

(8) The suspect showed that the file deserved
further investigation during the murder
trial.

Noun Phrase/Sentence (NPS): In (7), before
reading deserved, the file can be interpreted as just
a noun phrase acting as a direct object (where the
suspect is presenting a file to someone) or as the
beginning of a sentential complement (where the
suspect is making a point). Again, deserved dis-
ambiguates this in favor of the less frequent sen-
tential complement reading, and its counterpart in
(8) avoids the ambiguity altogether by using the
explicit complementizer that before the file, giving
us a way to measure the slowdown associated with
disambiguation.

(9) Because the suspect changed the file de-
served further investigation during the jury
discussions.

(10) Because the suspect changed, the file de-
served further investigation during the jury

discussions.

Noun Phrase/Zero (NPZ): Finally, in (9), be-
fore reading deserved, changed can be interpreted
as a transitive verb taking the file as a noun phrase
direct object (where the file was changed by the
suspect), or as an intransitive verb with no direct
object and the file as the subject of a separate clause
(where the suspect was changed). deserved disam-
biguates this in favor of the less frequent intran-
sitive reading, and introducing a comma between
the clauses in the sentence’s counterpart in (10)
removes the ambiguity.



3 Validating Syntactic Surprisal

As our method of computing syntactic surprisal is
novel, we first validate that it successfully isolates
syntactic predictability from word predictability.
For this to be the case, we will require that two
things be true: that syntactic surprisal captures
processing difficulty that is the result of syntac-
tic unpredictability, and that syntactic surprisal is
not redundant with lexical predictability. We will
evaluate each of these desiderata in turn.

3.1 Spyntactic Surprisal Captures Syntactic
Processing Difficulty:

To verify that syntactic surprisal can capture syn-
tactic unpredictability, we investigate differences
in syntactic surprisal between the ambiguous and
unambiguous garden path sentences in Huang et al.
(2022). Since garden path effects are the result of
ambiguity about the syntactic structure of a sen-
tence, a difference in surprisal at the point of dis-
ambiguation indicates sensitivity to differences in
syntactic predictability. We find these differences
in all types of garden paths for lexical surprisal (as
has been previously shown; Hale (2001); van Schi-
jndel and Linzen (2021)) as well as for syntactic
surprisal (Figure 2). We do not find differences
in the same direction before the point of disam-
biguation, indicating that the differences we ob-
serve post-disambiguation are not simply the result
of prior surprisal differences spilling over.

3.2 Syntactic Surprisal Captures Only
Syntactic Predictability

To verify that syntactic surprisal successfully iso-
lates syntactic factors on predictability, we make
two comparisons: first to lexical surprisal, to verify
that syntactic surprisal does not capture all of the
variance lexical surprisal does, and second to un-
igram frequency, to verify that syntactic surprisal
isn’t driven by the frequency of specific lexical
items.

Syntactical Surprisal does not capture all of lex-
ical surprisal’s variance: If syntactic surprisal
captures a strict subset of the variance captured by
lexical surprisal, we expect to see a subset of words
with high lexical surprisal and low syntactic sur-
prisal (in addition to words with highly correlated
syntactic and lexical surprisals). This subset should
represent words that are unpredictable for reasons
independent of the syntactic structures they imply,
whereas words that introduce infrequent syntactic

structures should have high syntactic and lexical
surprisals, as the unpredictability of the syntactic
structure means that a word that implies that struc-
ture is necessarily unpredictable. This matches
what we see in Figure 3a: the relatively frequent
verb trying introducing a reduced relative clause
has high syntactic and lexical surprisal, while in-
frequent nouns like microbe have low syntactic
surprisal but high lexical surprisal.

Unigram (in)frequency does not drive syntactic
surprisal: In Figure 3b, where we plot syntac-
tic surprisals for words in filler items with their
log-frequency within the Corpus of Contemporary
American English (COCA; Davies (2008-)). We
find a significant but small positive correlation be-
tween the two (r = 0.064, t = 3.18, p < 0.005),
indicating that more frequent words have a higher
syntactic surprisal — the opposite of what we’d
expect if lexical (in)frequency were driving syn-
tactic surprisal effects. This is likely due to the
fact that function words, which are generally high-
frequency due to their closed-class nature, typically
introduce additional syntactic structure and thus
have higher-than-average syntactic surprisal.

These three results — that syntactic surprisal
captures garden path effects, that we find a subset of
words with low syntactic surprisal and high lexical
surprisal, and that we find no evidence of lexical
(in)frequency driving syntactic surprisal — suggest
that syntactic surprisal captures only the syntactic
contributions to a word’s unpredictability. We will
now use syntactic surprisal in concert with lexical
surprisal to directly predict the magnitude of garden
path effects.

4 Evaluating Against Human Reading
Times

Recall that surprisal theory assumes a linear rela-
tionship between surprisal and measures of pro-
cessing difficulty such as reading times. We follow
van Schijndel and Linzen (2021) and estimate a
mapping between our surprisal measures and read-
ing times by fitting linear mixed effects models to
the filler (i.e., non-garden path) materials in Huang
et al. (2022). In order to compare syntactic and lexi-
cal surprisal, we fit four models: one with syntactic
surprisal as a predictor, one with lexical surprisal
as a predictor, one with both types of surprisal, and
one that ignores surprisal entirely. All four models
include non-surprisal predictors — unigram fre-
quency, word position, and word length — which
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Figure 3: Correlations between syntactic surprisal, lexical surprisal, and unigram frequency for each word in the
filler items of Huang et al. (2022). Two words — one with high syntactic surprisal and high lexical surprisal and
one with high lexical surprisal but low syntactic surprisal — are labeled with their context.

alone are not purported to capture garden path ef-
fects. To account for spillover effects, where pro-
cessing difficulty from a word spills over to affect
reading times at future words, we include all of
the aforementioned factors (except word position)
not only for the current word but also for the two
prior words (a simplification of the technique in
van Schijndel and Linzen (2021)). Further details
about these models are presented in Appendix A.1.
After all four of our models have been fit to the
filler items, we use the estimated coefficients to
predict reading times for the each of the critical
items.

5 Results

Predicted RT differences from our models, as
well as the RT differences observed in humans,
are presented in Figure 4. Regardless of which

RT conversion method is used, predicted reading
time differences greatly underestimate the read-
ing time differences observed in humans. This
is unlikely to be an issue with our surprisal-to-
reading-times conversion method more broadly,
as at the pre-disambiguation word, RTs and pre-
dicted RTs match much more closely than in post-
disambiguation regions, indicating that the differ-
ence in magnitudes is due specifically to an under-
estimation of the garden path effect.

Underestimation aside, if we compare amongst
the various RT conversion models, we can deter-
mine whether the inclusion of syntactic surprisal
in our RT-prediction models leads to a larger pre-
dicted garden path effect. To see this difference
more clearly, in Figure 5 we exclude the human
reading times and zoom in on the garden path ef-
fects predicted by the models. Table 1 presents the
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results of a mixed effects analysis of the predicted
RTs (for details see Appendix A.2). We find that
(1) models containing both surprisals predicted the
largest garden path effects, (2) models with only
syntactic surprisal predicted slightly smaller effects,
and (3) that models with only lexical surprisal or
no surprisal predicted much smaller garden path
effects than surprisal only models.

6 Discussion

In this paper we evaluate one explanation for the
discrepancy between the magnitude of garden path
effects in humans and surprisal-based estimates of
those magnitudes from LSTM LMs: That, com-
pared to human predictions, word predictability
estimates from LMs underweight the importance
of syntactic predictability relative to other factors.
We propose a method of estimating syntactic pre-
dictability from modified LSTM LMs, validate this
method’s ability to match our intuitions of the mea-
sure, and compare garden path effect magnitude

predictions derived from standard, lexical surprisal
and syntactic surprisal. We find that while syntactic
surprisal does lead to larger predicted garden path
effects, model-predicted garden path effects still
vastly underestimate the magnitude of garden path
effects found in humans.

We define syntactic surprisal in terms of the pre-
dictability of the next word’s CCG supertag — a la-
bel that indicates how that word syntactically com-
bines with its local context. This is motivated by
three desiderata: First, we want a measure that cap-
tures processing difficulty due to syntactic unpre-
dictability. Since CCG supertags capture local syn-
tactic structure, we hypothesize that the surprisal of
that supertag is a good predictor of syntactic unpre-
dictability. This is borne out in our evaluation of
syntactic surprisal in garden path sentences, where
syntactic surprisal predicts differences for our three
garden path constructions. Second, since syntactic
surprisal is designed to isolate syntactic predictabil-
ity, we want it not to track purely lexical factors



| MVRR

| NPS | NPZ

Both vs Syntactic Only
Syntactic Only vs Lexical Only
Syntactic Only vs Neither

B3 =0.93, p < 0.001
B =2.06, p < 0.001
B =17.09, p < 0.001

B =1.14, p < 0.001
B =1.94, p < 0.001
B =4.78,p < 0.001

B =1.13,p < 0.001
B =2.23,p < 0.001
B =295,p < 0.001

Table 1: Differences in garden path effects over the critical region from models that predict RTs from just syntactic
surprisal, just lexical surprisal, both, or neither estimated from a linear mixed effects model.

on word predictability. We find this to be the case
in analyses comparing it to lexical surprisal and
unigram frequency: We found (lexically) surpris-
ing, but syntactically predictable words with low
syntactic surprisal, as well as a positive correlation
between frequency and syntactic surprisal — the
opposite of what would be predicted if syntactic sur-
prisal was driven by unigram (in)frequency. Finally,
we want syntactic surprisal to be simple to compute,
which motivated us to use a measure derivable from
CCG supertagging and language modeling proba-
bilities, two simple sequence labelling tasks, rather
than more sophisticated parsing objectives.

The increase in garden path magnitudes we see
when using syntactic surprisal suggests that pre-
dictability estimates from LSTM LMs may indeed
undervalue the importance of syntactic factors rel-
ative to humans. That is, since syntactic surprisal
captures a subset of the variance that lexical sur-
prisal does, the fact that considering syntactic sur-
prisal when predicting human reading times leads
to better performance than using only lexical sur-
prisal suggests that the influence of syntactic fac-
tors on lexical surprisal is small relative to its ability
to capture variation in human reading times. One
potential explanation for this may be the difference
in the tasks humans and LMs perform: While LMs
need only predict words in corpora, humans must
also attempt to comprehend what they read. While
both tasks demand some sensitivity to syntactic
structure, the need to interpret sentences may place
greater importance on predicting structure, leading
to a higher sensitivity to syntactic unpredictability.

While our formulation of syntactic surprisal
allowed us to demonstrate the importance of a
stronger emphasis on syntactic predictability, the
large discrepancy between model-predicted and hu-
man garden path effect sizes indicates that there is
still much work to be done if we are to explain these
effects with surprisal-based theories. Future work
attempting to do so can look to more explicit mod-
els of syntactic predictability than predicting CCG
supertags. Architectures like the Recurrent Neu-

ral Network Grammar (Dyer et al., 2016) derive
word-level predictability estimates from explicit
syntactic parsing mechanisms rather than attempt
to derive syntactic predictability from word-level
predictability, and as a result may generate better
estimates of syntactic predictability than we do.

Another possibility that suggests itself is that
surprisal-based accounts of garden path effects sim-
ply cannot account for the magnitude of the slow-
downs observed in humans, even if it was based on
a perfect simulation of the human language model.
Instead, we may need to adopt a different model of
human syntactic disambiguation. One set of alter-
natives are two-stage, serial models of processing
(Frazier and Fodor, 1978). In such a model, when
readers first read through the ambiguous fragment
of the sentence, they commit to a small set of pre-
ferred parses. When they reach a disambiguating
region where all of the parses they have committed
to are no longer consistent with the input, a reader
would engage a separate, costly reanalysis process
in order to construct a new partial parse consistent
with the all of the currently available input. The
processing cost associated with this reanalysis pro-
cedures incurs a slowdown in reading times that
does not occur in an unambiguous sentence where
the incorrect initial parse is not available, result-
ing the garden path effects that we observe. Unlike
surprisal-based accounts, however, it is unclear how
to derive quantitative predictions for the size of gar-
den path effects from current two-stage accounts.
As aresult, it is difficult to know whether the quan-
titative mismatches between surprisal-accounts and
human reading times that we observed should be
taken as evidence for a two-stage account. This
further highlights the need for more precise quanti-
tative accounts of two-stage serial models we can
evaluate surprisal accounts against.
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A Appendix

A.1 Converting Surprisals to Reading Times

In order to gauge the impact of syntactic surprisal
on the predicted reading time at word n, rt,,, we fit
four mixed effects models over the filler data: one
containing only lexical surprisal (s/°*), one con-
taining only syntactic surprisal (s5,’""), one contain-
ing both, and one containing neither. As reading
times are sensitive to other features of the word
being read like unigram frequency (f,,), position
in sentence p, and length in characters (c,), we
include those variables as additional factors in the
regression. In order to account for spillover effects,
where processing difficulty from a word often sur-
faces in the reading times of subsequent words, we
include all of the aforementioned factors for the
prior two words. We additionally include random
intercepts by item and by participant, as well as
random slopes by item for all of the surprisal fixed
effects. This gives us the following linear mixed
effects model formulas:

Tt ~ fo* cn+ fno1 % cn1
+ fa2*cp2+p
+ (1 | item) + (1 | participant)

(neither)

Tty ~ ST 4 sler, 4gler
+ fn*Cn+ fno1*Cn1
+ fa—2*Cn_2+p
+ (14 steo 4 glez 4 et | item)

+ (1 | participant)

(lexical)

Ttn ~ Siyn + S;y_nl + Sfly_ng‘i‘
+ fa*cn 4 fno1*cpa
+ fa—2*¥Chp2+Dp
+ (14 552" 4+ s50% 4 5007, | item)
+ (1 | participant)
(syntactic)
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Tty ~ ST 4 sler sler,

syn syn syn
+ Sn + Sn—1 + Sp—2

+ fn * Cp + fnfl * Cp—1

+ fa2%Cn2+p (both)
+ (1 + slew 4 glez | 4 glea,

+ s 4 s+ 0V | item)

+ (1 | participant)

These models were fit using filler data from Huang
et al. (2022), and the coefficients from each model
were used to predict reading times for all of the
critical, garden path items from the corresponding
surprisals, frequencies, lengths, and positions.

A.2 Statistical Analysis of Predicted RTs

To analyze the predicted reading times that come
from our four models of surprisal-to-reading time
conversion, we fit three separate linear mixed ef-
fects models: one over MVRR garden paths, one
over NPS garden paths, and one over NPZ garden
paths. Each model includes fixed effects of ambi-
guity and the types of surprisals used in predicting
reading times: syntactic surprisal only, lexical sur-
prisal only, both surprisals, or neither. Crucially,
we include the interaction between these two fac-
tors, representing how our choice of surprisal-to-RT
conversion model affects the size of the predicted
garden path effect. We additionally include random
intercepts by item and by participant. This results
in the following mixed effects model formula:

pred_rt ~ ambiguity * model
+ (1 | item) + (1 | participant).

Since we have four different models converting
between surprisals and RTs, we estimate three con-
trasts for the interaction term: the model with both
surprisals vs. the model with only syntactic sur-
prisals, the model with only syntactic surprisals
vs. the model with only lexical surprisals, and the
model with only lexical surprisals vs. the model
with neither surprisal. The estimated magnitude
(represented by the S coefficient) as well as signifi-
cance of the difference for each of these contrasts
is reported in the main text in Table 1.



