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Abstract3

Languages are governed by syntactic constraints — structural rules that determine which sentences are4

grammatical in the language. In English, one such constraint is subject-verb agreement, which dictates5

that the number of a verb must match the number of its corresponding subject: “the dogs run”, but “the6

dog runs”. While this constraint appears to be simple, in practice speakers make agreement errors,7

particularly when a noun phrase near the verb differs in number from the subject (for example, a speaker8

might produce the ungrammatical sentence “the key to the cabinets are rusty”). This phenomenon,9

referred to as agreement attraction, is sensitive to a wide range of properties of the sentence; no single10

existing model is able to generate predictions for the wide variety of materials studied in the human11

experimental literature. We explore the viability of neural network language models—broad-coverage12

systems trained to predict the next word in a corpus—as a framework for addressing this limitation. We13

analyze the agreement errors made by Long Short-Term Memory (LSTM) networks and compare them to14

those of humans. The models successfully simulate certain results, such as the so-called number15

asymmetry and the difference between attraction strength in grammatical and ungrammatical sentences,16

but failed to simulate others, such as the effect of syntactic distance or notional (conceptual) number. We17

further evaluate networks trained with explicit syntactic supervision, and find that this form of supervision18

does not always lead to more human-like syntactic behavior. Finally, we show that the corpus used to19

train a network significantly affects the pattern of agreement errors produced by the network, and discuss20

the strengths and limitations of neural networks as a tool for understanding human syntactic processing.21

Keywords: computational modeling, neural networks, agreement attraction, syntactic processing,22

psycholinguistics23

INTRODUCTION

Every language is governed by a set of syntactic constraints — rules that determine whether a particular24

sentence is acceptable in that language. These rules are often independent of the meaning of the sentence:25

although most listeners would be able to interpret either “the dog is running” and “the dog are running”26
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as referring to a running dog, only “the dog is running” is a grammatical English sentence. A core goal of27

psycholinguistics is to determine how such syntactic constraints are enforced in real-time sentence28

production and comprehension.29

Amongst those syntactic constraints, agreement is both simple and extraordinarily widespread. Put30

simply, an agreement constraint requires that two or more syntactic elements share a particular set of31

features. Most varieties of English exhibit subject-verb number agreement, where subject noun phrases32

and their corresponding verbs must share their number feature: they must either both be singular, or both33

be plural (e.g., “the dog runs,” but “the dogs run”).34

While this constraint is simple to state, speakers sometimes fail to apply it correctly. Subject-verb35

agreement errors are particularly likely to arise in sentences with an attractor: a noun phrase with a36

number feature different than that of the subject (e.g., the attractor “cabinets” might give rise to the37

erroneous “The key to the cabinets are rusty”; Bock and Miller 1991). These errors occur in both38

production and comprehension (Bock & Miller, 1991; Pearlmutter, Garnsey, & Bock, 1999), and are39

modulated by a number of factors, including, among others, the type of syntactic constituent the attractor40

appears in (Bock & Cutting, 1992) and the linear or syntactic distance from the attractor to the verb41

(Franck, Vigliocco, & Nicol, 2002; Haskell & Macdonald, 2005; Vigliocco & Nicol, 1998).42

A complete theory of language comprehension and production must provide an account of how syntactic43

constraints are enforced during processing and of the ways in which the computations enforcing those44

constraints fail. While many proposals for such an account of agreement mechanisms exist in the45

literature — Marking and Morphing (Eberhard, Cutting, & Bock, 2005), Retrieval Interference (Badecker46

& Kuminiak, 2007; Wagers, Lau, & Phillips, 2009, etc.), and Feature Percolation (Franck et al., 2002,47

etc.), among others — few proposals can account for the full empirical picture. These accounts typically48

focus on a particular agreement phenomenon, and do not attempt to be fully specified with respect to the49

wide array of other agreement phenomena documented in the literature. For example, it is unclear how50

retrieval interference accounts would predict notional number effects (Humphreys & Bock, 2005), and51

underspecification in parts of the model—for instance, the choice of retrieval cues available—makes it52

difficult to ascertain whether this reflects a failure on the part of the account or a justification for a53

different set of cues to handle this particular situation.54
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The goal of this paper is to work towards an alternative approach to constructing such a comprehensive55

account of agreement processing. We leverage the success of the broad-coverage neural network56

language models—that is, word prediction models—that are widely used in applied language57

technologies. These language models are designed to take as input a sequence of words and predict the58

following word in that sequence. They are typically trained on a large corpus of naturally occurring text,59

which allows them to learn any number of syntactic or semantic properties from their training data. They60

are provided no explicit supervision, and as such will only learn properties of the language that are61

helpful for their training task: word prediction. We adopt these models for two reasons. First, unlike62

previous models of agreement attraction, they are broad-coverage: they can take as input any sequence of63

words and generate predictions for the next word. Second, neural network language models have been64

shown to be generally capable of enforcing subject-verb agreement in English, while making occasional65

agreement errors (Gulordava, Bojanowski, Grave, Linzen, & Baroni, 2018; Linzen, Dupoux, & Goldberg,66

2016). Taken together, these properties allow us to efficiently derive agreement predictions from the67

models for any set of sentences and compare the errors in those predictions to those made by humans.68

Unlike traditional cognitive models, which explicitly implement the mechanisms that researchers69

hypothesize are used by humans, processing mechanisms in neural language models emerge naturally70

over the course of training. As a result, it is much more difficult to describe in words the precise cognitive71

mechanism a neural network model implements. Rather than interpret the exact mechanisms that govern72

a neural network model’s behavior, it is often useful to understand the model in terms of the pressures73

that influence the kinds of representations and mechanisms the model can learn. The processing74

mechanisms the model develops over the course of training are the product of two factors: first, the75

model’s inductive biases, or the factors that lead a model to generalize in particular ways from its finite76

training data (e.g., architecture, or optimization procedure); and second, the training data and task. As77

such, characterizing the effect of these components on the outcome of learning serves as a way of78

understanding the mechanism the model implements (i.e., a reasonable hypothesis is that the model will79

implement the mechanism that is optimal to learn under the constraints of architecture and task).80

This suggests a paradigm through which we can characterize potential mechanisms underlying language81

processing behavior: manipulate a neural language model’s architecture or training objective(s), and82

compare the behavior of those models to that of humans. By characterizing the manipulations that result83
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in models producing human-like behavior, we can gain insight into the conditions under which84

human-like language processing can arise: do particular learning pressures make human language85

processing strategies optimal? Does a pressure toward a particular representational structure in addition86

to a word prediction objective make human error patterns emerge? Can we derive complex behavioral87

results from an interaction of simple biases and learning pressures?88

We adopt this approach to investigate whether pressure towards learning a particular, linguistically89

motivated structural representation align neural network models more closely with human behavior. We90

evaluate two types of models based on the Long-Short Term Memory (LSTM) neural network91

architecture (Hochreiter & Schmidhuber, 1997): models trained solely to predict the next word, and92

models trained to predict the next word and also labels from the Combinatory Categorial Grammar93

(CCG) syntactic formalism. We derive predictions from each of the two types of models for six sets of94

findings from the human agreement processing literature. Both sets of models successfully simulated a95

number of empirical findings, but failed to simulate others. Adding the explicit syntactic training96

objective had mixed results: in some cases it aligned the models’ error patterns more closely with those97

of humans, but in other cases it did not. We conduct follow-up analyses which suggest that even more98

sophisticated syntactic pressures may be necessary to bring models closer to human behavior.99

We then consider the other major kind of learning pressure: the training data. In our main experiments,100

models were trained on a concatenation of a subset of English Wikipedia and the CCGBank corpus of101

news articles (Hockenmaier & Steedman, 2007). We conduct follow-up experiments where we trained102

models either solely on the Wikipedia subset or solely on CCGBank. We found that both the size and103

genre of the training corpus affected the errors the models made. We take this to suggest that (1) neural104

network language models used as cognitive models may need to incorporate stronger inductive biases,105

not only to encourage more human-like behavior, but also to reduce sensitivity to the composition of their106

training corpora; and (2) researchers working on cognitive modeling with language models should aim to107

train those models on corpora that accurately reflect the data humans learn from.108

All of our LSTM models, which were trained on small to moderately-sized corpora by the standard of the109

language technologies world, displayed larger overall error rates than humans. This raises two questions:110

first, whether this is an issue with neural network models broadly, or if it is just the result of the scale and111

architecture of the models we’ve chosen. Second, whether aiming simply to reduce this error rate (by, for112
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instance, training more powerful models) will give us the human-like error patterns we are interested in.113

To address these questions, we conducted additional follow-up simulations using the publicly available114

GPT-2 language model (Radford et al., 2019), which was trained on many billions of words and is based115

on the Transformer neural network architecture (Vaswani et al., 2017). We found that, though GPT-2116

displays a lower overall error rate, this overall improvement does not translate into a more human-like117

error pattern.118

Before we describe our simulations in detail, we provide a brief introduction to agreement and agreement119

attraction in English, and discuss related prior work modeling human language processing with neural120

language models and how the present work fits into this landscape.121

Subject-verb agreement and agreement attraction in English122

Subject-Verb agreement is a constraint in many dialects of English that requires the number feature of a123

subject to match the number of the corresponding verb, as in Example 1. A mismatch in number features124

results in the ungrammatical Example 2.125

(1) The key opens the door.126

(2) *The key open the door.127

This constraint holds regardless of what noun phrases (NPs) appear elsewhere in the sentence, as shown128

in Example 3 and Example 4.129

(3) The key to the cabinet opens/*open the door.130

(4) The key to the cabinets opens/*open the door.131

In practice, human behavior can deviate from this description. Agreement errors occur occasionally in132

many contexts, and are particularly common in the presence of an NP whose number feature does not133

match that of the subject, such as Example 4: in this example, a higher error rate is expected compared to134

the minimally different Example 3 (Bock & Miller, 1991).135

This pattern of errors was originally documented in the sentence completion paradigm. In this paradigm,136

participants are given a prefix of a sentence up to but not including the main verb, as in Example 5 or 6,137

and are tasked with completing the sentence:138
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(5) The key to the cabinets...139

(6) The key to the cabinet...140

The experimenter then determines if the participant produced a grammatical verb that matches the141

number of the subject, like is, or an ungrammatical verb, like are. Following Bock and Miller’s study,142

agreement attraction has also been documented in comprehension (Parker & An, 2018; Pearlmutter et al.,143

1999; Wagers et al., 2009), and similar findings have been reported across languages (Franck, Lassi,144

Frauenfelder, & Rizzi, 2006; Franck et al., 2002; Lorimor, Bock, Zalkind, Sheyman, & Beard, 2008,145

among others)146

The magnitude of the agreement attraction effect—the difference in error rates between Example 5 and 6,147

for example—is sensitive to a variety of factors, both syntactic (Bock & Cutting, 1992; Franck et al.,148

2002, etc.) and semantic (Humphreys & Bock, 2005; Parker & An, 2018, etc.). A number of theories149

have been proposed to explain the influence of these factors on agreement; these include the Marking &150

Morphing model (Eberhard et al., 2005, etc.), feature percolation accounts (Franck et al., 2002, etc.), and151

memory retrieval-based accounts (Wagers et al., 2009, etc.). Each account is motivated by a particular152

subset of the empirical findings that are best explained by that account: notional number effects motivate153

the Marking & Morphing model (Humphreys & Bock, 2005, etc.), syntactic distance effects motivate154

feature percolation accounts (Bock & Cutting, 1992; Franck et al., 2002, etc.), and linear distance effects155

(e.g., Haskell and Macdonald 2005) and grammaticality asymmetry effects (Wagers et al., 2009) motivate156

memory retrieval-based models.157

In this paper, we use neural networks to simulate six human experiments that span the three groups of158

results that have motivated previous accounts. The findings of these experiments can be summarized as159

follows: (1) attractors in prepositional phrases give rise to a stronger attraction effect than those in160

relative clauses, and plural attractors generate a stronger attraction effect than singular attractors (Bock &161

Cutting, 1992); (2-3) attractors closer to the verb exert a stronger attraction effect, whether distance is162

measured in syntactic (Franck et al., 2002) or linear (Haskell & Macdonald, 2005) terms; (4) collective163

subjects with distributive readings have higher rates of plural agreement than those with collective164

readings (Humphreys & Bock, 2005); (5) attractors in oblique arguments cause a larger attraction effect165

than those in core arguments (Parker & An, 2018); and (6) attraction can be caused by attractors outside166
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of the clause containing the agreement dependency, and while attraction makes ungrammatical sentences167

seem grammatical, it does not make grammatical sentences seem ungrammatical (Wagers et al., 2009).168

Subject-verb agreement in neural language models169

Most relevant prior work on neural language models has evaluated the extent to which neural networks170

obey grammatical agreement constraints, and was not directly concerned with comparing the networks’171

errors to those made by humans. Elman (1991) evaluated Simple Recurrent Networks (SRNs) trained to172

predict the next word in a small artificial corpus and found that the models were capable of predicting the173

number of verbs accurately, even when the subject and verb were separated by a relative clause. More174

recently, Linzen et al. (2016) trained Long-Short Term Memory models (LSTMs) using a number of175

objectives, including word prediction, and evaluated whether they predicted the correct number inflection176

of the verb on preambles extracted from Wikipedia, which include naturally occurring attractors. While177

they concluded that word prediction alone was insufficient to learn agreement dependencies from natural178

corpora, Gulordava et al. (2018) later reached a different conclusion, demonstrating that a better trained179

LSTM language model could successfully learn agreement dependencies through word prediction, even180

when evaluated on so-called “colorless green ideas” preambles that are stripped of any semantic content181

that could facilitate agreement processing. Agreement across simple intervening noun phrases has also182

been a consistent part of syntactic benchmarks for language models (Hu, Gauthier, Qian, Wilcox, &183

Levy, 2020; Marvin & Linzen, 2018; Warstadt et al., 2020; Warstadt, Singh, & Bowman, 2019), with184

modern models performing reasonably well, though with some errors.185

Taken together, this body of work provides robust evidence that neural network language models are186

capable of representing subject-verb number agreement dependencies, though these representations have187

their limitations. Yet it is much less clear what representations those models employ for agreement188

dependencies, and how robust those representations are. One line of work aiming to address this question189

for RNNs has found evidence for a single pair of singular and plural units per model that represent190

number information for all subject-verb relationships within a sentence (Lakretz et al., 2021, 2019).191

Another line of work analyzing Transformer models (Vaswani et al., 2017), such as GPT-2 (Radford et192

al., 2019), suggests that attraction effects may be the result of the transformer’s attention mechanism193
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being subject to the same sorts of similarity-based interference effects as cue-based models from the194

human memory literature (Ryu & Lewis, 2021).195

As mentioned above, most prior work has not compared the neural networks’ detailed error patterns to196

those of humans. One exception is Linzen and Leonard (2018), who found that the models they trained197

exhibited agreement attraction errors, in general, as well as number asymmetry effects (with plural noun198

phrases exerting a stronger attraction effects than singular ones), but did not show higher error rates with199

attractors in prepositional phrases than with attractors in relative clauses (as was found for humans by200

Bock and Cutting 1992). However, the models used by Linzen and Leonard (2018) were not word201

prediction models, but classifiers trained solely to predict the number feature of the verb. This modeling202

setting is difficult to compare to the rest of the literature, which is concerned with word prediction203

models. This objective is also less cognitively plausible: unlike the classifier, which is focused only on204

verb number prediction, humans need to learn and process all aspects of language at the same time, and205

are not provided with explicit supervision about verb number.206

Like Linzen and Leonard (2018), the current work aims to model the patterns of agreement errors that207

humans produce. Unlike in their work, however, we use models trained on the general, broad-coverage208

word prediction task, rather than models tailor-made for agreement prediction. This requires us to use209

linking functions that relate the models’ probability distribution over the upcoming word to human210

behavioral measures. We discuss these linking hypotheses, as well as our modeling and statistical211

choices, in detail in the next section.212

The goals of this work are distinct from but related to a line of work investigating the inductive biases or213

types of training data necessary for models to acquire human-like syntactic capabilities (McCoy, Frank,214

& Linzen, 2020; E. Wilcox, Levy, Morita, & Futrell, 2018; E. G. Wilcox, Futrell, & Levy, 2023;215

Yedetore, Linzen, Frank, & McCoy, 2023, etc.). While we are motivated by the fact that the language216

processing strategies acquired by neural network are inherently learnable (which is not necessarily the217

case for all other cognitive models), in this work our primary goal is modeling syntactic behavior in218

adults, rather than in modeling acquisition. This is most clearly seen in our use of an auxiliary syntactic219

training objective to pressure our models to learn syntactic representations. We make no claims that the220

training signal providing by this task is used in the same way during human language acquisition;221

instead, we use this task to test the hypothesis that representations equivalent to those learned by training222
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on this task lead models to more human-like behavior. Another distinction between these lines of work223

and ours lies in the kinds of data they seek to explain. Both E. G. Wilcox et al. (2023) and the current224

work compare the syntactic abilities of humans and neural networks. But we are primarily focused on225

modeling where human syntactic processing fails, and what those errors reveal about human processing226

mechanisms, while E. G. Wilcox et al. (2023); Yedetore et al. (2023, etc.) are interested in syntactic227

abilities that humans are largely successful at but are purported to be difficult for simple neural models to228

learn (i.e., challenging versions of the poverty of the stimulus argument; Chomsky 1965, 1986).229

METHODS

Language Models230

Language models are natural language processing systems that assign probabilities to strings of words in231

a language. In this work, we focus on autoregressive language models — models that decompose the task232

of assigning probability to a sequence of words into the simpler task of providing a probability233

distribution over the next word in a sequence given all prior words (i.e., “predicting the next word word234

in a sequence”).1 We primarily use language models based on the LSTM architecture, a type of Recurrent235

Neural Network (RNN) architecture. We briefly describe this neural network architecture in the236

remainder of this section.237

RNNs transform a sequence of vector representations (representing, for example, words in a sentence)238

into a single vector representation by iteratively merging a vector representation of the left context (hi−1)239

with a vector representation of the input to the right of that context (wi) until all of the vectors are240

merged. In Simple Recurrent Networks (SRNs, Elman 1990), vectors are merged using Equation 1. The241

weight matrices Wh and Ww are learned linear transformations that are applied to hi−1 and wi242

respectively; the outcomes are summed and transformed by a non-linear activation function (in this case,243

the hyperbolic tangent function):244

1 Assigning probabilities to strings of words and providing a distribution over the next word in a sequence are equivalent, since P (w1...wn) = P (w1)P (w2 |

w1)P (w3 | w1, ..., w2)...P (wn | w1, ..., wn) for words w1, ..., wn.
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Figure 1: In our language modeling setup, each word is mapped to a word vector. Each of those repre-

sentations is combined with a representation of all previous words (hi−1) using a recurrent neural network

model (RNN) to create a representation hi for all words up to word i. To generate a prediction for word i,

hi is fed into a linear decoder (L) to generate a distribution over word i. During training, model weights

(which determine RNN and L) are adjusted to maximize the probability of the word that actually occurred

in the sentence at position i.

hi = tanh(Whhi−1 +Wwwi) (1)

In a neural network language model, words from the training data are mapped to learned vector245

embeddings, and sequences of those embeddings are fed into a neural network encoder that, like the246

recurrent network described above, produces a single vector that represents that sequence of words. That247
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representation is then provided as the input to a linear decoder — a learned linear transformation248

followed by a softmax operation — which outputs a probability distribution over the model’s vocabulary249

(see Figure 1). The model’s task is to align this probability distribution with the empirical probability that250

any particular word in the model’s vocabulary is the next word in the sequence. Before training, all of the251

model’s learned weights — in a simple recurrent network, those are the embedding mappings, the two252

weight matrices Wh and Ww, and the matrix representing the linear transformation in the encoder — are253

randomly initialized, and so the model’s output probability distribution is essentially random. For each254

training example, all of those weights are adjusted using stochastic gradient descent so as to increase the255

likelihood of the true next word from the training data.256

Our simulations primarily use LSTMs, a type of RNN that incorporates gating mechanisms designed to257

maintain representations over longer sequences; these mechanisms mitigate the issue that, due to258

successive merging operations, representations derived from early words have little effect by the end of259

the sequence. These gating mechanisms yield better representations of long-distance dependencies260

(Bhatt, Bansal, Singh, & Agarwal, 2020), which makes them better suited than SRNs for modeling261

agreement relations, and, in turn, agreement attraction. On a conceptual level, however, LSTMs262

fundamentally operate by the same principles as SRNs: they incrementally merge inputs from left to right263

using a trainable, parametrized function.264

In order to evaluate whether more sophisticated model architectures and training regimes can address265

issues of high error rates found in our LSTM-based models, we additionally consider GPT-2 (Radford et266

al., 2019), a language model based on the Transformer architecture (Vaswani et al., 2017). Unlike the267

RNN models described above, Transformer language models do not predict the next word from a268

representation generated by an incremental left-to-right composition operation. Instead, they construct269

representations using a mechanism called self-attention, where the model has direct access to270

representations of prior words. GPT-2 differs from our LSTM in many dimensions, and thus direct271

comparisons between our LSTM models and GPT-2 are difficult. However, since Transformer models272

like GPT-2 have had great success recently (including in modeling psycholinguistic data, e.g., Oh, Clark,273

and Schuler 2022; Schrimpf et al. 2021), we provide results for GPT-2 not as a part of any direct274

manipulation, but as an indicator of how larger, more powerful language models fare in their ability to275

match human agreement error behavior. To preview the results of our experiments, we find that GPT-2276

–11–



== D R A F T February 5, 2024 ==

Journal: OPEN MIND / Title: Neural Networks as Cognitive Models of the Processing of Syntactic Constraints

models do perform better than LSTMs syntactically (i.e., they assign greater probability to grammatical277

forms), but their errors do not uniformly pattern more like human errors than LSTM errors do.278

Model Architectures and Training Setup279

For each of the six human experiments we discuss, we compare human behavior to simulation results280

from the publicly available GPT-2 model, as well as two types of LSTM-based models we train—models281

trained only on word prediction (LM-ONLY models) and multi-task models, which are trained on both282

word prediction and Combinatory Categorial Grammar Supertagging (LM+CCG; Steedman 1987). The283

multi-task models are trained to predict, from a sequence of words, not only the next word, but also the284

most recent word’s supertag—an enriched part-of-speech tag that encodes local syntactic information285

(see Figure 2). Due to the rich syntactic information contained in supertags, supertagging has been286

described as “almost parsing” (Bangalore & Joshi, 1999), and so we hypothesize that jointly optimizing287

for both supertagging and language modeling accuracy will imbue a model with an additional bias toward288

learning more sophisticated syntactic representations (Enguehard, Goldberg, & Linzen, 2017; Qian,289

Naseem, Levy, & Fernandez Astudillo, 2021).290

We trained five instances of each model. The weights of each of these instances was randomly initialized291

separately; training multiple model instances with different initial weights allows us to determine to what292

extent the behavior observed is dependent on particular initial weights (McCoy, Min, & Linzen, 2020),293

much like group-level analyses in psychology. The five LM-ONLY model instances were trained for 12294

epochs over the 80 million words of English Wikipedia used in Gulordava et al. (2018), concatenated295

with the approximately one million words of the Wall Street Journal section of the Penn Treebank (WSJ296

Corpus; Marcus, Santorini, & Marcinkiewicz, 1993). Following Gulordava et al. (2018), the RNN297

encoder in each model was a 2-layer LSTM with 650 hidden units in each layer. LM-ONLY models298

achieved perplexities between 66.73 and 67.13 over the Wikipedia corpus’ test set.2299

2 Since perplexities are sensitive to tokenization choices, it is difficult to compare perplexities across different training set-ups to assess how well-trained a

particular model is. Since model perplexities are very similar across different instances of our models, we provide the top predictions of one model for sample

preambles in Appendix B: to demonstrate what our model has learned during training.
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Figure 2: An example sequence of CCG supertags for the sentence The key to the cabinets is rusty. Each

supertag encodes how the corresponding word composes with its syntactic neighborhood. The label Y/X

denotes that the word it labels merges with a constituent of type X on its right to form a constituent of type

Y (as with the and key), and Y \X denotes the same, but with the constituent of type X on its left (as with

to the cabinets and the key). To predict supertags successfully, models must learn to represent something

akin to the underlying structure of the sentence. In many cases, knowing the sequence of supertags makes

it possible to deterministically reconstruct the full parse of the sentence.
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Figure 3: An outline of the architecture used for the LM+CCG models. Using the internal representation

h5 constructed by an RNN encoder, classifier L1 generates a probability distribution over possible next

words w∗ and classifier L2 generates a probability distribution over possible supertags c∗ for the current

word.
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The five LM+CCG model instances were trained on both word prediction and supertagging: in addition300

to the linear decoder that predicted the next word, a secondary linear decoder predicted the current word’s301

supertag. The structure of this multi-classifier architecture is outlined in Figure 3. Word prediction was302

performed over the 80 million words taken from English Wikipedia (Gulordava et al., 2018),303

supplemented with approximately one million words of the WSJ Corpus. CCG supertagging was304

performed over CCGbank (Hockenmaier & Steedman, 2007), a version of the WSJ Corpus annotated305

with CCG derivations. The two training objectives—word prediction and supertagging—were weighted306

equally in training. LM+CCG models achieved language modeling perplexities ranging from 74.76 to307

75.70 on the Wikipedia test set, and assigned the highest likelihood to the correct CCG supertag between308

84.1% and 84.5% of the time. This is substantially higher than the accuracy of a baseline that selects the309

most frequent supertag for each word independent of its context, which is 71.2% (Clark, 2002); this310

suggests that the models have learned a considerable amount about local syntactic structure, and thus311

lends credence to our belief that our supertagging models learn relatively sophisticated syntactic312

representations.313

The models described so far were trained on the concatenation of two distinct corpora that differ in both314

size and genre. Given the sharp differences between these two corpora, we also trained two additional315

sets of models with the LM-ONLY architecture on each of those corpora in order to determine whether a316

particular size or writing style was a affected the models’ agreement behavior. Five model instances were317

trained on the 80 million word Wikipedia corpus, and five were trained on the approximately one million318

words of the WSJ Corpus. Test-set perplexities for models trained on Wikipedia data ranged between319

67.66 and 68.15, and those for models trained on WSJ data ranged between 55.32 and 56.13.320

Finally, our GPT-2 simulations employed the ”small” 124 million parameter GPT-2 model (Radford et321

al., 2019), trained on roughly 40GB of text scraped from the internet. This model achieves a perplexity of322

65.85 over the WSJ Corpus. We remind the reader that due to differences in tokenization and test sets,323

perplexities in this sections are not directly comparable.324

Linking model outputs to human behavior325

The behavioral data in the experiments we simulate has one of two forms: the proportion of singular326

verbs produced in a sentence completion paradigm, or the reading time of words in a critical region in a327
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self-paced reading study. Both paradigms are discussed in more detail in this section. As we described in328

the prior sections, a language model takes as input a sequence of words and outputs a probability329

distribution over the next word in that sequence. To compare the performance of these models to that of330

humans, we need to link the language model’s output to the behavioral responses recorded in the human331

experiments. This section discusses how we select an appropriate linking function, and how we combine332

it with a language model to construct what we will, in future sections, refer to simply as our (cognitive)333

model.3334

Predicting reading times The comprehension studies we simulate have employed the self-paced reading335

paradigm. In self-paced reading, participants are presented with sentences one word at a time; the next336

word is revealed after the participant presses a particular button. The dependent measure is the time that337

elapses between two key presses (the displayed word’s reading time). Longer reading times are taken to338

indicate greater processing difficulty caused by the word currently being displayed, or by one of the339

words immediately preceding it.340

In the context of agreement processing, reading times at the verb can indicate how acceptable the341

participant finds the subject-verb agreement relation in question. The logic of this paradigm relies on the342

observation that encountering an agreement violation incurs processing cost, which leads to longer343

reading times at the verb or at the words immediately after it. Agreement attraction can then surface in344

one of two manners: the amelioration of an agreement error, where ungrammatical sentences are read345

faster when an attractor matches the number of the verb, making it harder to detect the error; and the346

illusion of an agreement error, where grammatical sentences are read slower when an attractor347

mismatches the number of both the subject and verb (Pearlmutter et al., 1999; Wagers et al., 2009). We348

will discuss this logic in more detail when we describe the two comprehension experiments we simulate.349

3 We use the term “cognitive model” here only to distinguish the models we create, which aim to predict human experimental measures like error rates and

reading times, from the language models that underlie them, which aim only to predict the next word. While our eventual goal is to use our cognitive models

to investigate the cognitive processes that generate those experimental measures, we do not use the term here to indicate that these models provide an explicit,

interpretable account of a particular human cognitive process. See the General Discussion for a further discussion of how these models relate to the more

traditional cognitive models used in psycholinguistics.
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In order to convert the probability distributions provided by language models into a measure comparable350

with reading times, we use surprisal (Hale, 2001; Levy, 2008), defined in Equation 2.351

Surprisal(wi) = − log2(P (wi | w0, ..., wi−1)) (2)

Note that the probability P (wi | w0, ..., wi−1) is the probability that the i-th word in the sequence is wi,352

given that all of the prior words are w0, ..., wi−1. This is precisely the probability distribution we obtain353

from a language model after it has been given w0, ..., wi−1 as input. The relationship between human354

reading times and surprisal estimated from a language model in this fashion has been found to be355

approximately linear (Shain, Meister, Pimentel, Cotterell, & Levy, 2022; Smith & Levy, 2013).356

Predicting verb completions The production studies we simulate all used the sentence completion357

paradigm briefly described above. In this paradigm, participants are asked to repeat and complete a given358

preamble (in this case, a complex noun phrase), and their responses are coded for the number feature of359

the verb they produce and whether the agreement relation is grammatical. For example, when provided360

the preamble “The keys to the cabinet”, a participant might respond with “The keys to the cabinet are on361

the table”, which would be coded as a plural and grammatical response. Agreement attraction manifests362

as a higher error rate for preambles where the attractor noun’s number mismatches the subject’s number363

compared to preambles where the numbers of the two nouns match. To simulate such an experiment with364

language models, we need to convert the output of the language model — a distribution over the next365

word in the sentence — to the probabilities with which the model would produce a singular or plural verb.366

For our simulations, we will use what we will refer to as the ONE-SAMPLE linking function. This367

function is equivalent to having the simulated production process decide on a verb form based on a single368

sample from the underlying language model’s probability distribution (see the General Discussion for369

more details and the motivation for the name ONE-SAMPLE). Under this paradigm, we first select a370

candidate pair of singular and plural forms of a particular verb — for example, is and are — and compute371

their probabilities under the distribution provided by the language model. We then renormalize the372
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Figure 4: To simulate a sentence completion experiment, a language model is given each preamble as

input, producing a probability distribution over the following word (a). The probabilities of a candidate

singular and plural verb are extracted from this distribution (b) and renormalized (c) and this new dis-

tribution is taken to represent the probability with which the model would produce a singular or plural

verb.

probabilities over the two candidate words such that they sum to 1, and take the renormalized373

probabilities as the probabilities with which the model produces a singular or plural verb (see Figure 4).374

Experimental Stimuli375

For each simulation, we aimed to use the stimuli provided in the publications that reported on the relevant376

human experiment. This goal was complicated by the fact that the models can only process words377

included in their training data; some of the more infrequent words in the experimental stimuli did not378

occur in the training corpus at all, or were replaced during training with a standard “unknown”379

(out-of-vocabulary) token (this is standard practice motivated by the fact that language models are unable380

to learn appropriate vector representations for words that occur a small number of times in the training381

corpus.) To deal with this issue, we identified any out-of-vocabulary word that was a part of a noun382

phrase (and thus could potentially contribute number information) or was manipulated in the simulated383

experiment’s design and replaced it with a semantically similar, in-vocabulary word. Note that this384

necessarily increases the frequency of the word as estimated using our training corpora, since the original385

word did not appear in the models’ vocabularies—precisely because it fell under the out-of-vocabulary386

frequency threshold—while the replacement word did appear in the vocabulary. If the word was not in a387

noun phrase, or was not relevant to the experimental manipulation, we did not attempt to find a substitute388
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word, and replaced it with the out-of-vocabulary token instead. A summary of the changes we made to389

the materials can be found in Appendix C: .390

Due to the limited vocabulary of the models trained on the WSJ Corpus, a larger number of words needed391

to be adjusted. To avoid editing experimental materials too significantly, we limited our simulations392

based on these models to the three experiments that focused on syntactic structure: Bock and Cutting393

(1992), Franck et al. (2002), and Haskell and Macdonald (2005).394

The candidate pairs of singular and plural verbs for production experiments were always the present tense395

forms of the verb be. We made this choice this for two reasons: first, these verbs appear with high396

frequency in the training data, and thus are likely to have number information properly encoded in their397

vector representations; and second, these verbs are plausible with nearly any subject noun phrase, and398

thus can be used across a wide variety of stimuli. In Appendix A: , we report a simulation of Bock and399

Cutting (1992) across a wider variety of verbs to demonstrate that our results are largely robust to verb400

choice.401

Statistical Analysis402

For each of our statistical analyses, we first constructed a mixed-effects model with a maximal403

mixed-effects structure, that is, random slopes and intercepts for each experimental item and model404

instance. If the statistical model did not converge, the random effects structure was incrementally pruned405

until convergence was reached. For all mixed-effects models reported below, this procedure resulted in406

the inclusion of random intercepts only, for both items and model instance.407

For the analyses where the response variable was surprisal, we used linear mixed-effects regression. For408

the analyses where the response variable was a probability, we used beta mixed-effects regression409

(Ferrari & Cribari-Neto, 2004), which assumes that the dependent variable (the probability of a particular410

inflection of the verb) is beta distributed. This assumption bounds the value of the dependent variable411

between 0 and 1, as is appropriate for a probability. To test the significance of each fixed effect, we report412

the result of either a Wald test (for beta mixed-effects models) or a t-test (for linear mixed-effects413

models). To test whether two fixed effects are significantly different from each other, we report the results414

of a linear hypothesis test where we compare the fit of the original mixed-effects model to a model where415

the two fixed effects in question are constrained to be equal.416
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SIMULATIONS

This section describes the results of simulations of the six experiments from the human literature that we417

examine in this paper. For each experiment, we lay out the motivation and design of the experiment,418

describe the outcome of the human experiment, and report the results of our simulations. In the Summary419

of Results section, we synthesize the results of the simulations with respect to the three empirical420

questions we seek to answer: (1) what agreement phenomena do LM-ONLY language models capture?421

(2) what effect does the addition of an explicit syntactic training objective have on a model’s agreement422

behavior? and (3) how does a model’s agreement behavior depend on the corpus used to train the model?423

Attractors in prepositional phrase vs. relative clauses424

Background: The first three experiments we simulate investigate how hierarchical syntactic structure425

affects agreement attraction. We first simulate Experiment 1 of Bock and Cutting (1992), in which the426

authors tested whether attractors located within prepositional phrases (PPs, Examples 7–8) exerted a427

stronger attraction effects than attractors within relative clauses (RCs, Examples 9–10):428

(7) The demo tape from the popular rock singer. . .429

(8) The demo tape from the popular rock singers. . .430

(9) The demo tape that promoted the rock singer. . .431

(10) The demo tape that promoted the rock singers. . .432

Human results: Using the sentence completion paradigm (see Methods for further details), Bock and433

Cutting compared the strength of the attraction effect within PPs (the difference in error rates between434

preambles like Example 7 and 8) to that within RCs (the difference in error rates between Example 9 and435

10). They found that attraction was stronger from attractors in PPs than attractors within RCs. They also436

documented a number asymmetry: there were more attraction errors in sentences with singular subjects437

than in sentences with plural subjects.438

Simulation results—modifier type: A comparison of the human results and simulations using439

LM-ONLY and LM+CCG models is shown in Figure 5. Both types of models exhibited a significant440

attraction effect (LM-ONLY: β = 0.91, |z| = 34.19, p < 0.001; LM+CCG: β = 0.78, |z| = 24.14,441
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Figure 5: Human and simulation results for Bock and Cutting (1992). Vertical bars represent the size

of the attraction effect: the difference between the subject-attractor number match condition (the lower,

circular endpoints) and mismatch condition (the higher, square endpoints). Error bars represent standard

errors across the five randomly initialized models trained for each model architecture and training set. If

the models simulate the relevant result from Bock and Cutting (1992), the attraction effect in RCs (the

length of the solid red bar) is smaller than that in PPs (the length of the dashed blue-green bar). This

pattern is reversed in LM-ONLY models trained on the WSJ Corpus, and no significant difference is found

between modifier types in all other models.
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p < 0.001). However, unlike humans, LM-ONLY models exhibited no interaction between the attraction442

effect and the type of modifier the attractor appeared in (β = −0.017, |z| = 0.66, p = 0.51). The443

LM+CCG models likewise showed no significant interaction (β = −0.058, |z| = −1.18, p = 0.07). The444

three-way interaction between attraction, syntactic environment (PP vs. RC), and model type (LM-ONLY445

vs. LM+CCG) found no evidence for any difference in the performance of the two types of models446

(β = 0.041, |z| = 1.00, p < 0.31). In summary, neither type of model successfully simulated the human447

pattern.448

Simulation results—number asymmetry: Simulations using both models replicated the number449

asymmetry (LM-ONLY: β = 0.20, |z| = 5.47, p < 0.001; LM+CCG: β = 0.34, |z| = 7.40, p < 0.001).450

There was a significant 3-way interaction between attraction, subject number, and model type451

(β = −0.16, |z| = 2.66, p < 0.01), with LM+CCG exhibiting greater number asymmetry than452

LM-ONLY. In contrast to the effect of modifier type, then, the number asymmetry effect was captured by453

both types of models and was stronger in LM+CCG models.454

Sensitivity to training corpus: LM-ONLY models trained on the smaller WSJ Corpus displayed a455

significant attraction effect (β = 0.85, p < 0.001, |z| = 24.14), and an interaction between the attraction456

effect and the type of modifier (β = −0.09, p < 0.01, |z| = 2.63), such that attractors led to more errors457

when they were in relatives clauses than when they were in prepositional phrases. This effect was,458

crucially, in the opposite direction of that found in humans. Models trained on the larger Wikipedia459

dataset also exhibited an attraction effect (β = 0.94, p < 0.001, |z| = 8.32) but no interaction between460

that effect and modifier type (β = 0.0084, p = 0.76, |z| = 0.31). The Wikipedia-trained models exhibited461

a number asymmetry (β = 0.22, p < 0.001, |z| = 5.60), while WSJ Corpus-trained models did not462

(β = 0.053, |z| = 1.08, p = 0.28). The two types of models differed in the magnitude of the interaction463

between attraction and type of modifier, as assessed by a three-way interaction (β = 0.15, |z| = 2.29,464

p < 0.05); this was also the case for the analogous three-way interaction between model type, attraction465

and number (β = 0.10, |z| = 2.31, p < 0.05).466

This pattern of results suggests a strong influence of dataset on the ability to replicate the difference in467

error rates between attractors in PPs and RCs, even with no difference in model architecture or training468

objective. While models trained on the smaller WSJ Corpus produced the wrong verb more often when469
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the attractor was in an RC, models trained on the larger Wikipedia dataset showed no difference in error470

rates between the two conditions. While neither matched human behavior—more errors when attractors471

appear in PPs compared to RCs—training on Wikipedia resulted in more human-like results than training472

on the WSJ Corpus.473

Overall agreement error rates Human error rates, even in the conditions in which error rates were474

highest, were less than 15%. By contrast, models routinely made agreement errors in more than 50% of475

trials when an attractor was present. Though this difference in magnitude indicates that the models we476

trained are particularly susceptible to attraction errors, we take this discrepancy to be largely orthogonal477

to the goals of our investigation. We are concerned primarily with (1) whether our simple models exhibit478

agreement attraction (which high rates of agreement errors make apparent), (2) whether the factors we479

investigate modulate error rates in the same way in humans and models, and (3) whether changes to the480

models’ training data or training objective lead to more human-like behavior. Since these motivating481

questions consider only how differences in error rates change across various conditions, we have no482

reason to believe that high overall error rates are problematic for our analyses.483

It is possible, of course, that modifications to our modeling setup that would reduce the overall error rate484

could could imbue models with inductive biases that also affect differences in error rates across485

conditions. For instance, the LM-ONLY language models we use are chosen in part due to the fact that486

they do not ”build-in” sophisticated syntactic representations (compare to, for instance, architectures that487

explicitly parse; Dyer, Kuncoro, Ballesteros, and Smith 2016). Since sophisticated syntactic488

representations are key to identifying the subject and avoiding agreement errors, the high rate of errors is489

tied directly to our choice of an small (in both number of parameters and quantity of training data),490

simple, and unbiased model for this evaluation.491

GPT-2 To address the concern with the LSTMs’ high overall agreement error rates, we repeat our492

simulations with GPT-2, a stronger model based on the Transformer architecture. Overall, GPT-2 error493

rates were smaller than, or roughly comparable to, human error rates in all conditions (ranging between494

1.2% and 7.7%). GPT-2 exhibited agreement attraction (β = 0.23; |z| = 3.15; p < 0.005) as well as a495

number asymmetry (β = 0.24; |z| = 2.34; p < 0.05), but showed no interaction between the attraction496

effect and the type of modifier the attractor appeared in (β = 0.043; |z| = 0.59; p = 0.56). Thus, while497
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GPT-2’s super-human overall error rates suggest that more powerful models can compute agreement498

more accurately overall, this increased overall accuracy does not necessarily lead to more human-like499

error patterns.500

Syntactic vs. linear distance effects on attraction501

Background Franck et al. (2002) sought to further elucidate the role of syntactic structure in502

agreement attraction, focusing on a specific question: do the processes underlying agreement attraction503

operate over linear or hierarchical representations? To do so, they examined how attraction errors are504

affected by the linear distance between the attractor and verb, and compared the linear distance effect to505

the effect of the syntactic distance between those two words. Consider Example 11:506

(11) The threat(s) [PP to the president(s) [PP of the company(s) ] ]. . .507

This sentence contains two potential attractors: the later one, company(s), appears within a PP that508

modifies the earlier one, president(s). Since the PP that contains company(s) is embedded within the PP509

that contains president(s), the path from company(s) to the verb along the hierarchical structure of the510

sentence is longer than the path from president(s) to that verb (see Figure 6). If we find that the lengths of511

these paths — what Franck et al. call the syntactic distance between the attractor and the verb — are512

inversely proportional to the strength of the attraction effect caused by the two noun phrases, then we513

have evidence that attraction errors arise when participants process the hierarchical representations of the514

sentence. Franck et al. contrast these syntactic distances with the linear distances from the attractors to515

the verb. In terms of linear distance, company(s) is closer to the verb than president(s), simply because516

company(s) appears to the right of president(s) in the linear sequence of words. Thus, by comparing the517

strength of attraction from the first, syntactically closer noun phrase (i.e., president(s)) to attraction from518

the second, linearly closer noun phrase (i.e., company(s)), we can investigate the nature of the structure519

(hierarchical or linear) used by humans or model during the agreement computations relevant to520

attraction: If the syntactically closer noun phrase causes stronger attraction than the linearly closer one,521

we have evidence for the role of hierarchical structure; if the difference is in the opposite direction, we522

have evidence for the role of linear order.523

–24–



== D R A F T February 5, 2024 ==

Journal: OPEN MIND / Title: Neural Networks as Cognitive Models of the Processing of Syntactic Constraints

TP

NP

D

The

N’

N

threat(s)

PP

to NP

D

the

N’

N

president(s)

PP

of NP

D

the

N

company(s)

T’

...

Figure 6: A simplified syntactic representation of Example 11. Even though the first attractor, the pres-

ident(s), is more distant from the eventual position of the verb (within the T’) than the second attractor,

the company(s), it is closer to the verb in the syntactic structure: fewer nodes need to be crossed to reach

T’ from president(s).
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Figure 7: Human and simulation results for Franck et al. (2002). Vertical bars represent the size of the

attraction effect: the difference between the subject-attractor number match condition (the lower, square

endpoints) and mismatch condition (the higher, circular endpoints). These attraction effects are shown for

the syntactically closer attractor (to the left of each facet) and the linearly closer attractor (to the right of

each facet), marginalizing over the condition of the other attractor. Error bars for the LSTMs represent

standard errors across the five randomly initialized models trained for each model training objective and

training set. Crucially, in humans, the attraction effect from syntactically closer attractors is greater than

that of linearly closer attractors. The reverse is true for all of the models with the exception of GPT-2.
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Human results: In Franck et al.’s experiment, syntactically closer attractors generated stronger524

attraction effects than linearly closer ones.525

LSTM Simulations: The comparison of interest for each model is between the attraction effects526

caused by the syntactically closer attractor and that caused by the linearly closer attractor. Consequently,527

in Figure 7 we plot the magnitude of the attraction effect for each attractor, collapsing over the influence528

of the other attractor.529

Both models displayed the opposite effect from humans: while there were significant effects of both the530

linearly closer attractor (LM-ONLY: β = 0.79, |z| = 38.51, p < 0.001; LM+CCG: β = 0.75,531

|z| = 33.57, p < 0.001) and the syntactically closer one (LM-ONLY: β = 0.29, |z| = 14.48, p < 0.001;532

LM+CCG: β = 0.28, |z| = 13.04, p < 0.001), linear effects were significantly stronger than syntactic533

ones (LM-ONLY: χ2 = 336.21, p < 0.001; LM+CCG: χ2 = 254.47, p < 0.001). A comparison between534

LM-ONLY and LM+CCG models did not find a significant difference in either the linearly closer or535

syntactically closer attractor’s attraction effect between model types (linearly closer: β = −0.020,536

|z| = 0.24, p = 0.80; syntactically closer: β = 0.013, |z| = 0.18, p = 0.86), again indicating that,537

contrary to our hypothesis, adding the CCG training objective did not make the models’ syntactic error538

patterns more human-like.539

Effect of training corpus: Both sets of models trained on only a single corpus showed a significant540

effect of attraction from both the syntactically closer attractor (WSJ: β = 0.20, |z| = 8.022, p < 0.001;541

Wiki: β = 0.26, p < 0.001, |z| = 12.65) and the linearly closer one (WSJ: β = 0.73, p < 0.001,542

|z| = −27.17; Wiki: β = 0.85, p < 0.001, |z| = 40.06). However, in both cases, as in our prior543

experiments, the attraction effect from linearly closer attractors was much stronger than the effect from544

syntactically closer attractors, the reverse of what Franck et al. (2002) found in humans (WSJ:545

χ2 = 205.82, p < 0.001; Wiki: χ2 = 442.64, p < 0.001). A comparison between the two models using546

two-way interactions revealed no significant differences in the attraction effect caused by either of the547

attractors (linearly closer: β = 0.050, |z| = 0.53, p = 0.595; syntactically closer: β = −0.021,548

|z| = 0.226, p = 0.82).549

GPT-2: GPT-2 showed a significant effect of attraction from both the syntactically closer attractor550

(β = 0.41; |z| = 8.88; p < 0.001) and the linearly closer attractor (β = 0.10; |z| = 2.42; p < 0.05).551
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Unlike the other models we evaluated, GPT-2 did show stronger effects from the syntactically closer552

attractors (χ2 = 24.14; p < 0.001), as well as error rates across conditions (ranging from 1.92% to553

9.20%) on par with those observed in Franck et al. (2002) (approximately 1.30–9.6%). In this case, then,554

GPT-2 was significantly closer to human behavior than our weaker LSTM-based models, suggesting that555

one of the differences between the models and their training data aided in capturing syntactic distance556

effects.557

Linear Distance Effects in Disjunction558

Background: The two human experiments we have discussed so far suggested that agreement559

attraction in humans is sensitive to hierarchical syntactic structure, but neither provided clear-cut560

evidence as to whether or not humans are also sensitive to linear distance. In particular, in the Franck et561

al. (2002) comparison between linear and syntactic distance effects, syntactic distance was never held562

constant across linear distance conditions; as such, their results can speak only to the relative strengths of563

syntactic and linear distance, not to the existence of a linear distance effect independent of variation in564

syntactic distance. The absence of any linear distance effects in humans would indicate that agreement565

attraction errors—and, it follows, agreement computations—occur in the context of processes that operate566

over hierarchical structures, while the existence of a purely linear effect, over and above the hierarchical567

effects, would point to agreement being computed over a representation that encodes linear ordering.568

To determine if there are such purely linear effects on agreement, Haskell and Macdonald (2005)569

compared rates of plural agreement in sentences where the subject was a disjunction (i.e. included the570

word or), and where one disjunct was singular and the other plural (see Examples 12 and 13). Both571

disjuncts are equally distant from the verb in syntactic terms4 but the second disjunct is linearly closer to572

the verb. As such, disjunction makes it possible to test for a linear distance effect independently of573

syntactic distance. Note that there is no canonical agreement pattern for disjunct subjects in Mainstream574

4 Note that while this is true in many syntactic analyses (Gazdar, Klein, Pullum, & Sag, 1985; Jackendoff et al., 1977), including the one adopted by Haskell

and Macdonald (2005), asymmetric analyses of coordination are common in minimalist approaches to syntax (i.e., Cormack and Smith 2005; Kayne 1994).

That being said, in a standard asymmetric analysis (Kayne, 1994), the second disjunct forms a constituent with or and is thus more syntactic distant from the

verb than the first disjunct. This means that linear and syntactic distance still make opposing predictions in Haskell and Macdonald’s materials.
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American English (see, for example, evidence from Foppolo and Staub 2020), and thus neither the575

singular or plural form can be considered an agreement error.576

(12) Can you ask Brenda if the boy or the girls. . .577

(13) Can you ask Brenda if the boys or the girl. . .578

Human results: Haskell and Macdonald (2005) found greater rates of plural agreement when the579

plural disjunct was linearly closer to the verb, indicating that linear distance affects agreement (though580

see Keung and Staub 2018 for an alternative account of these results).581

LSTM simulations: Simulation results are shown in Figure 8. Both models exhibited a similar pattern582

to humans: conditions where the noun closer to the verb was plural had significantly greater rates of583

plural agreement than conditions where the noun closer to the verb was singular (LM-ONLY:584

β = −0.43, |z| = 11.22, p < 0.001; LM+CCG: β = −0.58, |z| = 12.84, p < 0.001). However, the size585

of the effect was much smaller than that reported in Haskell and Macdonald (2005), and thus this set of586

results, while promising, leaves room for other models to better match human behavior. A comparison587

across models indicated that the CCG supertagging objective strengthened the linear distance effect588

compared to LM-ONLY (β = 0.23, |z| = 4.03, p < 0.001). In this case, then, the syntactic objective did589

lead to more human-like behavior; surprisingly, this was the case for a linear distance effect rather than590

for a hierarchical one as we might have expected. We return to this point in the discussion.591

Effect of training corpus: Models trained on both smaller training sets also preferred to produce592

plural verbs when the plural disjunct appeared closer to the verb (WSJ: β = −0.64, |z| = 14.10,593

p < 0.001; Wiki: β = −0.23, |z| = 4.98, p < 0.001). The effect size was larger in models trained on the594

WSJ Corpus than in models trained on the much larger Wikipedia corpus (β = 0.46, |z| = 7.59,595

p < 0.001). This illustrates that training over larger datasets does not universally lead to more human-like596

behavior.597

GPT-2: Like all of the other models, GPT-2 preferred producing plural verbs when the plural disjunct598

was closer to the verb (β = −0.75; |z| = 8.69; p < 0.001). The magnitude of this effect in GPT-2 was599

comparable to that found in some of the more human-like LSTM-based models (LM+CCG and600

LM-ONLY models trained on WSJ), but was still far below that observed in humans. Since there is no601
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Figure 8: Human and simulation results for Haskell and Macdonald (2005). Vertical bars represent the

size of the linear distance effect: the difference between plural agreement rates when the singular subject is

closer to the verb position (the square endpoints) and when the plural subject is closer to the verb position

(the circular endpoints). Error bars represent standard errors across the five randomly initialized models

trained for each model architecture and training set. The size of the linear distance effect is represented by

the length of the bar (all models had higher rates of plural agreement noun closer to the verb was plural

than when it was singular). While all of the models exhibited some linear distance effect, the magnitude

of the effect in humans was much larger than in any of the models.
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canonical grammatical response in this experiment, we cannot determine whether GPT-2’s sophisticated602

architecture led to a reduction in error rates in this simulation.603

Notional Number and Distributivity604

Background: The previous experiments have characterized syntactic effects on agreement attraction:605

How does the linear and hierarchical position of the attractor influence agreement behavior? We now turn606

to semantic factors that affect agreement processing. Several studies have demonstrated an influence of607

semantic or notional number—the number of countable parts in the conceptual entity referred to by the608

noun phrase. Notional number contrasts with grammatical number, which is typically determined by the609

morphology of the head noun (e.g., the plural morpheme -s in many varieties of English). The role of610

notional number is particularly salient in collective NPs:611

(14) The gang near the motorcycles...612

(15) The gang on the motorcycles...613

In Example 14, the preposition near tends to give rise to a collective reading, where the gang is viewed as614

a single collective entity located near a group of motorcycles. This gives the NP a singular notional615

number. By contrast, the preposition on in Example 15 favors a distributive reading, where each member616

of the gang is located on their own motorcycle; this results in plural notional number.617

While subject-verb agreement is ostensibly a syntactic constraint, prior work has demonstrated that it is618

also affected by the notional number of the subject, with notionally plural subjects leading to higher rates619

of plural agreement than notionally singular subjects (Bock, Nicol, & Cutting, 1999; Eberhard, 1999;620

Humphreys & Bock, 2005). Analyzing the ability of neural language models to simulate these notional621

number effects is of particular interest given that the models are trained solely on word prediction or622

CCG supertagging; since models only understand language through the text they are trained on, they lack623

the grounding in the physical world that might be necessary to capture agreement patterns that depend on624

factors such as the spatial organization of gang members and motorcycles (Bender & Koller, 2020).625

Given such impoverished semantic capabilities, we hypothesize that the models will have greater626

difficulty capturing these semantic influences on human agreement behavior.627
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Figure 9: Human and simulation results for Humphreys and Bock (2005). Endpoints represent the rate

of plural agreement in the distributive-biased condition (circular endpoints) or the collective-biased con-

dition (square endpoints). Error bars represent standard errors across the five randomly initialized models

trained for each model architecture and training set. In humans, Humphreys and Bock (2005) observed

higher rates of plural agreement when the reading of the collective subject was biased toward a distributive

reading. We observe no such difference in any of the models’ results.
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Human Results: In a sentence completion study, Humphreys and Bock (2005) found that participants628

produced plural verbs more often when the preposition favored a distributive reading (as in Example 15)629

than when it favored a collective reading (as in Example 14).630

LSTM simulation results: We compare plural agreement rates for humans and both types of LSTMs631

in Figure 9. Models showed no significant difference in rates of plural agreement between632

distributive-biased and collective-biased prepositions (LM-ONLY: β = 0.047, |z| = 1.32, p = 0.19;633

LM+CCG: β = −0.030, |z| = 0.65, p = 0.52), and there was no evidence of an interaction that would634

indicate a difference between the two types of models (β = 0.074, |z| = 1.29, p = 0.20). These null635

results could indicate one of two things: either our models do not use representations of notional number636

as part of the computations that result in an inflected verb form, or they simply have no representation of637

notional number at all. We will examine the second possibility in the Summary of Results.638

GPT-2: Like in our simulation of linear distance effects with disjunct subjects, there is no canonical639

grammatical response we should expect our models to have, so we cannot test whether the model’s640

correctness improves. Like the other models, GPT-2 showed no differences in the rates of plural641

agreement between the two types of prepositions (β = −0.017; |z| = 0.21; p = 0.83).642

Argument Status643

Background: Agreement attraction is also affected by factors at the interface of syntax and semantics.644

Building on the hypothesis that core arguments, which are necessary for the interpretation of the verb, are645

encoded in memory more distinctively than oblique arguments, Parker and An (2018) hypothesized that646

the strength of attraction would differ between attractors in core arguments and attractors in oblique647

arguments:648

(16) CORE ARGUMENT: The waitress who sat the girl(s) unsurprisingly was/were unhappy about all649

the noise.650

(17) OBLIQUE ARGUMENT: The waitress who sat near the girl(s) unsurprisingly was/were unhappy651

about all the noise.652
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The reasoning that underlies this prediction is as follows. Memory retrieval models argue that agreement653

errors are caused by erroneous retrieval of the attractor’s number feature instead of that of the subject654

(Badecker & Kuminiak, 2007; Parker & An, 2018; Wagers et al., 2009). These misretrieval errors are less655

likely if the features of the attractor are well encoded, which, by hypothesis, they are in core arguments656

but less so in oblique ones (Parker & An, 2018; Van Dyke & McElree, 2011): More strongly encoded657

features provide a stronger indication that the attractor is not the subject, steering the memory retrieval658

process away from the attractor.659

Parker and An (2018) presented participants with sentences such as Example 16 and 17 in a self-paced660

reading paradigm. The study followed a 2× 2× 2 design: singular vs. plural attractor, grammatical vs.661

ungrammatical sentence (i.e., singular vs. plural main verb; the subject was always singular), and core vs.662

oblique argument.663

Recall that in self-paced reading, agreement attraction can manifest in two ways: first, as a facilitatory664

effect in ungrammatical sentences, where an ungrammatical sentence is read faster in the presence of an665

attractor NP that mismatches the subject in number (and thus matches the verb in number). The attractor666

creates an illusory agreement dependency with the verb, which shares a number feature with it. Thus, in667

the case of an attraction error, an ungrammatical sentence is read as if it were a grammatical one, leading668

to shorter reading times than if no error had occurred. Second, agreement attraction can manifest as an669

inhibitory effect in grammatical sentences, where grammatical sentences are read more slowly in the670

presence of an attractor NP whose number mismatches the subject (and therefore also the verb). An671

agreement error in these circumstances would result in an ungrammatical agreement relation, as the672

attractor and verb do not share the same number, which in turn would result in longer reading times than673

if no error had occurred. Overall, the attractor’s presence reduces the processing cost associated with674

ungrammaticality—the difference between reading times in grammatical and ungrammatical conditions.675

In the Parker and An (2018) paradigm, we expect this reduction in the cost of ungrammaticality to surface676

at the matrix verb (was/were), where the grammaticality of the agreement dependency can be determined.677

Human results: In Parker and An’s experiment, participants were more susceptible to attraction errors678

when the attractors were in oblique arguments than when they were in core arguments. Parker and An do679

not report an analysis of reading patterns on grammatical sentences.680
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(a) Simulation Results, Grammatical

(b) Simulation Results, Ungrammatical

Figure 10: Word-by-word surprisals from our simulations and corresponding reading times from Exp. 1

of Parker and An (2018). Error bars are standard errors. Since effects in self-paced reading typically spill

over into the reading times of the next few words, we provide two additional words for the human results.

The relevant effect is found at unhappy in the human data, with the attraction effect in the oblique argument

condition (the difference between dashed lines) being significantly larger than the attraction effect in the

core argument condition (the difference between solid lines). We see no such difference in models other

than GPT-2.
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LSTM simulation results—ungrammatical sentences: A comparison of surprisals at the critical681

word to the mean reading times reported by Parker and An (2018) can be found in Figure 10; for full682

word-by-word surprisals, and in particular the differences in surprisal at the attractor, see Appendix D: .683

As in the human experiment, both models showed an attraction effect for ungrammatical oblique684

argument sentences (LM-ONLY: β = −1.09, |t| = 26.11, p < 0.001; LM+CCG: β = −0.97,685

|t| = 19.17, p < 0.001). Unlike humans, however, the models also showed attraction effects for686

ungrammatical core argument sentences (LM-ONLY: β = −1.12, |t| = 27.80, p < 0.001; LM+CCG:687

β = −1.12, |t| = 22.19, p < 0.001), and there was no significant interaction between argument status and688

attraction (LM-ONLY: β = −0.018, |t| = 0.615, p = 0.53; LM+CCG: β = −0.072, |t| = 1.94,689

p = 0.051). An analysis comparing LM-ONLY and LM+CCG models did not find a significant690

three-way interaction between model type, argument type and number mismatch (β = 0.053, |t| = 1.12,691

p = 0.26), suggesting that the syntactic training objective did not affect the models’ ability to simulate692

the human error patterns.693

LSTM Simulation results—grammatical sentences: As Parker and An do not present attraction694

analyses for the grammatical sentences in their experiment, we present the simulation results here695

without comparing them to the human patterns. Both models showed a significant effect of attraction696

(LM-ONLY: β = 0.69, |t| = 24.00, p < 0.001; LM+CCG: β = 0.57, |t| = 15.62, p < 0.001), but no697

significant interaction between attraction and argument status (LM-ONLY: β = −0.037, |t| = 1.28,698

p = 0.20; LM+CCG: β = −0.0024, |t| = 0.064, p = 0.95). A comparison between LM-ONLY and699

LM+CCG did not find a three-way interaction between the additional objective, attractor argument type,700

and subject-attractor number match (β = −0.034, |t| = 0.73, p = 0.46). It did, however, yield an701

interaction between the model type and subject-attractor number match, reflecting smaller attraction702

effects in LM+CCG (β = −0.0012, |t| = 2.15, p < 0.05).703

GPT-2: For this (and the following) comprehension simulation, there is no real measure of a model’s704

error rate. As a result, these results cannot show whether GPT-2 has a lower overall error rate relative to705

our LSTM models. We thus present results of these simulations only to demonstrate the ability of GPT-2706

to mimic human error patterns.707
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In ungrammatical sentences, we found a significant attraction effect (β = −1.10; |t| = 7.01; p < 0.001),708

with an interaction with argument status such that the attraction effect was attenuated when the attractor709

was in core arguments compared to oblique arguments (β = 1.21; |t| = 7.71; p < 0.001). Grammatical710

sentences displayed a similar pattern, with a significant attraction effect (β = 0.94; |t| = 5.70;711

p < −0.001) that was smaller when the attractor was in a core argument (β = −0.83; |t| = 5.039;712

p < 0.001). Unlike the other models, and like human participants, GPT-2 showed an effect of argument713

status on the strength of attraction. This suggests that some aspect of GPT-2’s training or architecture714

may allow GPT-2 to represent argument status and encode that feature in a way that influences agreement715

processing.716

Grammaticality Asymmetry717

Background: As noted in the previous section, attraction can affect reading in two ways: it can cause718

participants to read grammatical sentences more slowly, or it can cause them to read ungrammatical719

sentences faster. Theories that attribute agreement attraction to an error in encoding the number of the720

subject (Eberhard et al. 2005, among others) predict that both of these effects should be of the same721

magnitude (Badecker & Kuminiak, 2007; Wagers et al., 2009). This is because grammaticality is722

determined by the number of the verb, which appears only after the subject is encoded; as such, there is723

no reason to expect subject encoding errors to occur with different frequency in grammatical and724

ungrammatical sentences.725

Some encoding accounts also hypothesize that encoding errors emerge from an erroneous percolation of726

the attractor’s number feature to the subject noun phrase as a whole (Franck et al., 2002). These accounts727

thus additionally predict that attraction errors can only occur when the attractor is within the subject NP,728

as that is the only case in which there is an upward path through which the attractor’s number feature can729

percolate to the subject node.730

Wagers et al.’s self-paced reading study tests both of these predictions using sentences with RC-modified731

subjects:732

(18) The musician(s) [ who the reviewer(s) praise(s) so highly ] will probably win a Grammy.733
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Unlike the sentences used in the Bock and Cutting (1992) experiment discussed above, in these materials734

it is the matrix clause subject, musician(s), that acts as the attractor NP, and the agreement relation that is735

manipulated—the subject-verb dependency between reviewer(s) and praise(s)—is internal to the relative736

clause. As a result of this configuration, the attractor is not within the subject, and thus percolation737

accounts predict no attraction in this paradigm.738

Human results: Contrary to the predictions of all encoding accounts of agreement attraction, Wagers739

et al. (2009) found that human readers show a grammaticality asymmetry: they displayed attraction740

effects in ungrammatical sentences, but not in grammatical ones. Wagers et al. (2009) additionally741

confirmed that attractors outside of a relative clause can cause attraction within that relative clause,742

providing additional evidence against the percolation-based encoding account in particular.743

LSTM Simulation results: A comparison between the models’ surprisals at the critical word and744

reading times at the critical region of the human data can be seen in Figure 11. For full word-by-word745

surprisals, including surprisal differences due to words prior to the critical region, see Appendix D: . Like746

humans, both types of models showed a significant agreement attraction effect in ungrammatical747

sentences (LM-ONLY: β = −0.41, |t| = 12.48, p < 0.001; LM+CCG: β = −0.30, |t| = 10.17,748

p < 0.001), but, unlike humans, they also showed attraction in grammatical sentences (LM-ONLY:749

β = 0.09, |t| = 3.32, p < 0.005; LM+CCG: β = 0.089, |t| = 3.02, p < 0.005). We found a significant750

interaction between attraction and grammaticality in both models (LM-ONLY: β = −0.16, |t| = 6.72,751

p < 0.001, LM+CCG: β = 0.107, |t| = 4.83, p < 0.001), such that ungrammatical sentences displayed752

larger attraction effects than grammatical ones, in line with the grammaticality asymmetry observed in753

humans. An analysis comparing the simulation results across types of models found no evidence of an754

effect of the CCG supertagging objective on the grammaticality asymmetry (β = −0.054, |t| = 1.57,755

p = 0.11). The presence of an asymmetry indicates that, like humans, agreement errors in models are not756

simply caused by faulty encoding of the subject’s number, but by a mechanism that is sensitive to the757

verb’s number. This could take the form of a retrieval error, as Wagers et al. argue is the case for humans,758

or a bias toward reading sentences as grammatical (Hammerly, Staub, & Dillon, 2019). We return to this759

point in the summary of results.760
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(a) Simulation Results, Singular Subject

(b) Simulation Results, Plural Subject

Figure 11: Surprisals for models in our simulation of Exp. 3 of Wagers et al. (2009) at the verb praise(s),

where the grammaticality of the agreement relation within the RC becomes clear, compared to the human

data from that experiment (right). Error bars are standard errors. We see a grammaticality asymmetry in

both humans and models, reflected in that fact that attraction in ungrammatical sentences (the difference

between the dashed lines) is stronger than in grammatical sentences (the difference between the solid

lines).
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GPT-2: Unlike the rest of the models we evaluated, GPT-2 failed to display a significant attraction761

effect in either ungrammatical sentences (β = 0.39; |t| = 1.46; p = 0.15) or grammatical sentences762

(β = −0.23; |t| = 1.18; p = 0.24), and there was no significant interaction between attraction and763

grammaticality (β = −0.16; |t| = 0.44; p = 0.66). In this case, then, the weaker LSTM models were764

more human-like than the stronger transformer model GPT-2. We did find a significant attraction effect in765

the subset of sentences with a singular subject, and thus a plural attractor in the mismatch condition766

(β = 0.65; |t| = 2.33; p < 0.05); this is the condition where we would expect the largest attraction effects767

due to a combination of number asymmetry and grammaticality asymmetry (this analysis replicates one768

of the simulations reported by Ryu and Lewis 2021).769

Summary of Results770

The simulations we reported in this section aimed to answer three major questions: first, what phenomena771

from the human agreement attraction literature are captured by a simple neural network language model772

without explicit syntactic supervision or syntactic inductive bias (LM-ONLY)? Second, does the addition773

of the explicit syntactic training objective lead models to better capture those phenomena? And third,774

how do differences in the corpora used to train a neural language model affect the agreement attraction775

phenomena the model captures? In this section, we discuss how the results of our six simulations bear on776

these three questions. We then contextualize our findings more broadly in the General Discussion.777

What phenomena do LM-ONLY models capture? Our first goal was to determine how well a simple778

language model that lacks explicit language-specific biases captures the range of factors that affect779

agreement processing in humans. To do so, we compared the behavior of human participants to the780

behavior of LM-ONLY models trained on both Wikipedia and the WSJ Corpus. The experiments we781

simulated can be grouped into three categories: experiments that bear on the role of hierarchical structure782

in agreement processing, experiments that bear on the role of semantic factors in agreement processing,783

and an experiment that demonstrates a grammaticality asymmetry in agreement attraction. We will784

discuss the effect of additional syntactic training in the next section.785

The Grammaticality Asymmetry In our simulation of Experiment 3 from Wagers et al. (2009), we786

sought to determine whether models can simulate the grammaticality asymmetry, where attractors cause787
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ungrammatical sentences to be read faster but do not cause grammatical sentences to be read more788

slowly. We found that models—both LM-ONLY and LM+CCG—behave in line with this asymmetry,789

displaying greater susceptibility to attraction in ungrammatical than grammatical sentences.790

Wagers et al. interpret the grammaticality asymmetry in humans as indicating that attraction does not791

result solely from encoding errors. In English, subjects generally precede the verbs they agree with. As a792

result, an error in encoding the subject’s number necessarily occurs before the verb is processed, and793

therefore the number of the verb—which determines the grammaticality of the subject-verb agreement794

relation—should not affect the rate of agreement errors: we should see as many errors in grammatical795

sentences as in ungrammatical ones. The fact that we do see a grammaticality asymmetry, Wagers et al.796

argue, supports models that attribute agreement attraction to erroneous retrieval of the subject’s number797

at the verb rather than erroneous encoding of the subject.798

Wagers and colleagues’ account of the grammaticality asymmetry could plausibly explain our LSTM799

models’ behavior. These models can be divided into two components: an LSTM encoder, which800

constructs a representation of the sequence of words observed thus far, and a decoder, which takes the801

representation generated by the encoder and outputs a probability distribution over the next word. The802

distinction between these two components roughly corresponds to the distinction between encoding and803

retrieval processes: when constructing its encoding, the LSTM encoder only has access to the subject, as804

is the case for encoding processes in human participants. By contrast, the decoder’s estimate of a verb’s805

likelihood as the next word depends on the identity of the verb: our models’ estimate of806

P (w∗i+1 | w1, . . . , wi) is sensitive to the hypothetical next word w∗i+1. Since this probability is directly807

mapped to our simulated behavioral measure (as described in the methods section), we can use Wagers808

and colleagues’ reasoning to conclude that some of the erroneous behavior of the models must be809

attributed to the decoder rather than the encoder: the asymmetry can only arise if the process generating810

the errors can determine the number (and thus the grammaticality) of the verb.811

Factors at the Syntax-Semantics Interface We simulated two human experiments that were812

concerned with factors at the syntax-semantics interface: distributivity in agreement with collective813

subjects (Humphreys & Bock, 2005) and the effect of argument structure on agreement attraction (Parker814

& An, 2018). Both LSTM models failed to mirror human behavior: there was no difference in plural815
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agreement rates between distributive-biased and collective-biased subjects, and no difference in attraction816

rates between attractors in core and oblique arguments. We hypothesize that models’ failure to simulate817

these semantic effects on agreement is connected to a more fundamental issue in language models: the818

inability of models trained solely on language modeling to develop the grounding necessary for true819

language understanding (Bender & Koller, 2020). In particular, to match the hypothesized mechanism820

underlying human behavior for the distributivity experiments (Humphreys & Bock, 2005), a model821

would need to distinguish between, for example, an NP that is more likely to be conceptualized as a822

single, collective entity and an NP that is more likely to be conceptualized as multiple entities distributed823

in space. This kind of mapping, from linguistic material to entities in an external world, may lie beyond824

the abilities of models trained solely on linguistic material at this scale (though see Pavlick 2023 for825

evidence that these capacities may emerge when models are trained on orders of magnitude more training826

data). We speculate that a multi-modal model with a visual training objective may be better able to827

capture such effects (for a example of a multi-modal model in distributional semantics, see Bruni, Tran,828

and Baroni 2014).829

Similar limitations may underlie the models’ failure to simulate the results of Parker and An (2018). The830

difference between attractors in core and oblique arguments in humans is hypothesized to be due to the831

differential encoding of arguments based on their importance during interpretation: since core arguments832

are more central to interpretation than oblique ones, attractors in core arguments are better encoded (Van833

Dyke & McElree, 2011), and thus are less likely to interfere with agreement than more poorly encoded834

oblique arguments. Since word prediction models are never explicitly tasked with interpreting the835

meaning of the representations they construct—only with predicting upcoming words—they are less836

subject to the pressures that Parker and An suggest lead humans to differentially encode core and oblique837

arguments. This may partly explain why this distinction does not affect the models’ agreement error838

rates. However, this explanation is complicated by our GPT-2 simulations, which did reveal differences839

in attraction from core and oblique arguments. We leave an exploration of exactly how this behavior840

manifests in GPT-2 to future work.841

Hierarchical Structure and Linear Distance The first three experiments we simulated842

characterized the effect of syntactic and linear position on agreement attraction: differences in attraction843

strength between attractors in prepositional phrases and relative clauses (Bock & Cutting, 1992),844
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differences in syntactic distance between the attractor and verb (Franck et al., 2002), and differences in845

the linear distance separating disjuncts in the subject from the verb (Haskell & Macdonald, 2005).846

LM-ONLY models broadly failed to capture these structural effects: they showed no difference in847

attraction strength between PP and RC attractors, whereas humans made more attraction errors for848

preambles with PP attractors compared to those with RC attractors (Bock & Cutting, 1992). Our849

simulations also showed stronger attraction effects from attractors linearly closer to the verb than ones850

that were syntactically closer to the verb—the reverse of the effect found by Franck et al. (2002). Taken851

together, these two results suggest that models operate over linear representations based on the surface852

form of the input rather than the hierarchical representations used by humans (Momma & Ferreira, 2019).853

Finally, though the models displayed a significant effect of linear distance in the same direction as the854

effect found by Haskell and Macdonald (2005), the magnitude of this effect was far smaller than in855

humans.856

We hypothesize that stronger hierarchical biases may be necessary for models to fully simulate syntactic857

and linear distance effects on human agreement processing. The two empirical findings we failed to858

capture—the effect of the type of modifier in which the attractor appears (PP vs. RC), and the effect of859

the depth of the attractor within the subject—can both be explained through syntactic distance (Franck et860

al., 2002), under the assumption that higher rates of agreement errors correspond to a shorter distance861

from the attractor to the verb in the hierarchical structure of the sentence (see Figure 12). This suggests862

that what may be missing from our models is an accurate hierarchical representation of input that has a863

strong causal role in the models’ word predictions: if the models compute agreement over a flat, linear864

representation, they cannot be sensitive to differences in a measure such as syntactic distance. Our865

LM+CCG models, which were trained with explicit syntactic supervision, were motivated by this866

hypothesis; we discuss those models in the next section.867

Does the syntactic bias imparted by supertagging lead to more human-like behavior? Success at the868

supertagging task requires sophisticated representations of syntactic structure. For example, correctly869

predicting the supertag (S\NP)/ADJ for “is” in “The key to the cabinets is...” requires a model to both870

recognize an NP to its immediate left and predict that the upcoming material will eventually result in an871

ADJ that combines with the current word and the NP to the left to form an S . That is, the model must872
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TP

NP

NP

The demo tape

PP

P
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NP

the popular rock singers

...

(a) Example PP-modified Preamble

TP

NP

NP

The demo tape

CP

C

that

TP

t T’

T

∅

VP

t V’

V

promoted

NP

the rock singers

...

(b) Example RC-modified Preamble

Figure 12: Example (simplified) syntactic trees corresponding to the PP and RC conditions in Bock and

Cutting (1992). Crucially, the attractor NP in embedded more deeply in the subject’s structure in the RC-

modifier condition (12b) than in the PP-modifier condition (12a), resulting in a longer syntactic distance

from the attractor to the inflected verb’s position.
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identify “the cabinets” or “the key to the cabinets” is an NP, predict that the next word is likely to be an873

ADJ like “rusty,” and reason that “is” must be an (S\NP)/ADJ to have the full sentence (“The key to the874

cabinet is rusty”) form an S. We hypothesized that a language model that shared the representations it875

uses for word prediction with a supertagger would be biased toward accessing the syntactic information876

in those representations, and, as a result, would exhibit more human-like error patterns when simulating877

agreement attraction experiments, particularly those that tested syntactic phenomena (Bock & Cutting,878

1992; Franck et al., 2002). This hypothesis was not borne out: the syntactic training objective had no879

discernible impact on the ability of the models to capture human error patterns in our simulations of Bock880

and Cutting (1992) and Franck et al. (2002). At the same time, this objective did lead to more human-like881

results in other simulations: LM+CCG models exhibited a stronger number asymmetry (Bock &882

Cutting, 1992), stronger linear distance effects (Haskell & Macdonald, 2005), and weaker attraction in883

grammatical sentences (Parker & An, 2018) than LM-ONLY models. We discuss each of these884

observations in turn.885

Are representations shared between word prediction and supertagging? Why did the886

supertagging objective fail to affect the networks’ syntactic behavior? Our hypothesis was that in the887

multi-task setting the representations generated by the LSTM encoder would better encode fine-grained888

syntactic information; those, in turn, would be used not only by the classifier that performed the889

supertagging task, but also by the classifier dedicated to word prediction, which determines the overall890

behavior of the cognitive model. This hypothesis crucially rests on the assumption that the891

representations used by the two classifiers are shared; if that assumption is incorrect, and the two sets of892

representations are distinct, separable subspaces of the LSTM encoder’s representational space, we893

would expect little difference in the syntactic behavior of LM-ONLY and LM+CCG models during word894

prediction.895

To test whether the limited impact of the supertagging objective was due to a lack of shared896

representations between the two objectives, we conducted two analyses: a local ablation analysis and a897

distributed “amnesic probing” analysis. The local ablation analysis aimed to determine whether the898

outputs of particular neurons encoded properties that were crucial to performance in both word prediction899

and CCG supertagging. To do this, we measured the performance of one of our LM+CCG models over900

the test set of CCGBank after ablating (i.e., setting to 0) in turn each of the 650 neurons in the output901
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Figure 13: The language modeling and CCG supertagging losses over the test set of one of our LM+CCG

models with the output of one neuron in the final layer set to 0. Each dot represents the performance of

the model ablating a particular final-layer neuron. Dashed lines represent the model’s performance with

no neurons ablated. Lower losses indicate better performance.

layer of our model. This is equivalent to ignoring the information encoded in one of the dimensions of902

the models’ vector representation of the input. If the features encoded by one of these neurons is shared903

across the two tasks, removing the output of that neuron from the model’s representation should impact904

the performance of our model on both of those tasks. By contrast, removing the output of a neuron that905

encodes features that are used in just one of the models’ tasks should only affect the model’s performance906

on that task. We plot the results of this analysis in Figure 13. We find a positive correlation between word907

prediction and supertagging losses (r = 0.21; t = 5.44, p < 0.001), indicating that intervening on a908

neuron tends to affect word prediction and supertagging losses in the same way. This suggests that909

representations are largely shared between the language modeling and supertagging components of our910

models.911

Interpreting this first analysis depends on a localist interpretation of the networks’ representations—it912

assumes that each individual neuron encodes some potentially syntactic information that we can remove913

and observe performance after that information has been removed. While this approach has been fruitful914

in isolating meaningful units of syntactic information in some cases (Lakretz et al., 2021, 2019),915
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representations emerging from neural networks need not represent information in this highly localized916

manner (Rumelhart & McClelland, 1987).917

To address the possibility that the relevant representations are distributed, we use amnesic probing918

(Elazar, Ravfogel, Jacovi, & Goldberg, 2021), an approach that uses techniques from the de-biasing919

literature in Natural Language Processing (Bolukbasi, Chang, Zou, Saligrama, & Kalai, 2016; Ravfogel,920

Elazar, Gonen, Twiton, & Goldberg, 2020) to identify and remove differences across a linear subspace of921

a models’ representational space, preventing the model from using particular sources of information.922

In practice, our procedure takes the form of a single step of the Iterated Null Space Projection (INLP;923

Ravfogel et al. 2020) method using the trained CCG decoder as the classifier whose accuracy we wish to924

reduce: we construct a linear transformation T from our trained linear classifier C such that for any vector925

representation x, C(T (x)) = 0, and apply T to to all vector representations output by our model. Since926

the classifier trained to predict CCG supertags can no longer distinguish between vector representations927

transformed by T , we can conclude that all information formerly used to perform CCG supertagging was928

stripped from our model’s representations. If information is shared across the word prediction and929

supertagging tasks, then we should expect applying T to reduce word prediction performance.930

Of course, for this and the previous analysis, it is necessarily the case that some information will be931

useful to both tasks: for example, removing a representation of the identity of the previous word will932

impair both word prediction and the identification of that previous word’s supertag. What we are933

interested in is how much information learned from the CCG supertagging training is used during934

language modeling. To set an upper bound on the reduction in performance that could be attributable to935

information the model learned to represent through just language modeling training, we trained a936

supertagging classifier over the representations from one of our LM-ONLY models. Crucially, only the937

final classifier was trained on CCG supertags: the LM-ONLY model generated a representation based938

only on its word prediction training, and a classifier (identical in architecture to the supertagging classifier939

in our LM+CCG models) was trained to predict supertags from those LM-ONLY representations. In940

other words, the weights of the LM-ONLY encoder were frozen before training the classifier, and thus the941

classifier could only use the representations learned from the word prediction objective. We then applied942

an identical procedure to this model, removing any information useful to CCG supertagging that was943

learned solely from word prediction. The drop in language modeling performance we observe after this944
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Model LM Loss CCG Accuracy

LM+CCG 4.921 84.5%

LM+CCG, amnesic 7.180 21.23%

LM-ONLY 4.325 84.30%

LM-ONLY, amnesic 7.182 21.23%

Table 1: Word prediction losses (lower is better) and CCG supertagging accuracy (higher is better), before

and after amnesic probing techniques were used to remove CCG-related information from the models’

representations.

procedure acts as a baseline of performance loss that is due to the removal of features that are not learned945

as part of supertagging training. The results of this analysis are shown in Table 1.946

We observe two things from these results. First, amnesic probing affects LM-ONLY models as strongly947

as LM+CCG models, if not more strongly. This could suggest that the information learned from CCG948

supertagging training of LM+CCG models is not used during language modeling. However, we also see949

that the classifier trained over the representations generated by our LM-ONLY models achieves similar950

top-1 accuracy to our LM+CCG models. This suggests that the syntactic information in the encoder’s951

representations that is learned in the LM+CCG setting training is already learned through word952

prediction alone. This suggests that the failure of the CCG supertagging objective to lead to more953

human-like syntactic behavior may simply be due to the fact that the CCG supertagging task is954

insufficiently syntactically complex to improve our models’ syntactic representations beyond those955

learned from simple word prediction. We will discuss the potential implications of this hypothesis, as956

well as how more syntactically sophisticated tasks may overcome this issue, in the General Discussion.957

When do LM+CCG models better simulate humans than LM-ONLY models do? While we958

found little difference between LM-ONLY and LM+CCG models in the simulations that bear on linear959

and syntactic distance, we did find three notable differences between the models’ performance, all of960

which bring LM+CCG models closer to the human error patterns.961
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First, in our simulation of Bock and Cutting (1992), LM+CCG models exhibited a larger number962

asymmetry than LM-ONLY models (like humans, both models showed a larger attraction effect for plural963

attractors than for singular attractors). Second, in our simulation of Haskell and Macdonald (2005),964

LM-ONLY models, like humans, showed a bias in favor of agreeing with the number of the linearly closer965

attractor in a disjunct subject like the boys and the girls. However, the magnitude of this effect was much966

smaller than was observed that in human participants. LM+CCG models showed a larger effect size for967

this experiment, though it was still not comparable to that of humans. Finally, in our simulation of Parker968

and An (2018), LM+CCG models showed smaller agreement attraction effects in grammatical sentences969

than LM-ONLY models, while the attraction effect in ungrammatical sentences did not change970

significantly between LM-ONLY and LM+CCG models. The pattern shown by LM+CCG models is in971

line with the grammaticality asymmetry observed in the human experiments of Wagers et al. (2009),972

where agreement attraction was found only in ungrammatical sentences.973

To understand these differences in light of our analysis of shared representations, it is helpful to consider974

the various ways in which an additional supertagging objective can influence our model’s word prediction975

behavior. We hypothesized that supertagging would give the model additional incentive to learn syntactic976

representations that will then be recruited for word prediction. Our analysis in the previous section977

suggests that this has not happened, since the LM+CCG models rely on the same syntactic information978

learned just by training on next-word prediction.979

However, there are other, indirect ways in which this additional training task can influence the980

representations a model learns. For instance, additional pressure for performance on CCG supertagging981

may not lead to new information being encoded, but may reduce pressure to learn other information used982

only in language modeling. Since the models’ loss is a sum of language modeling and CCG supertagging983

losses, The optimization process will prefer robustly encoding information that helps both training984

objectives to encoding information that only marginally improves language modeling performance. This985

could result in weaker, more heuristic sentence processing capacities that lead to the more human-like986

error patterns we observe.987

How does training data affect agreement behavior? Next, we discuss our experiments that compared988

LM-ONLY models trained on the Wall Street Journal section of the Penn Treebank (WSJ) to those989
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trained on a subset of English Wikipedia. These two training corpora differ in both size and genre, both990

of which could affect the agreement behavior our models exhibit; we will discuss these factors in turn.991

The first difference between the corpora is size. Whereas the WSJ corpus is composed of just under 1992

million words, the subset of English Wikipedia is significantly larger, consisting of approximately 80993

million words. In general, models that are given more data learn to perform better at word prediction994

(Kaplan et al., 2020), and models that perform better at their task tend to behave in a more human-like995

manner (Goodkind and Bicknell 2018; Merkx and Frank 2021, though see Oh and Schuler 2023a,996

2023b). We see this in models trained on the Wikipedia dataset, which show more human-like agreement997

behavior than models trained on WSJ in our simulation of Bock and Cutting (1992).998

In addition to size, we hypothesized that the training dataset can influence the final model’s agreement999

behavior primarily by exposing the model to various agreement-related syntactic configurations. In1000

particular, we hypothesized that greater exposure to these configurations will lead to more human-like1001

behavior for simulations that rely on properties of those configurations (for example, models will process1002

relative clauses better if they see more relative clauses during training). To test this empirically, we1003

estimated the frequency of a number of relevant agreement configurations (subject-verb relations, relative1004

clauses, disjunct subjects, etc.) for each of our simulations within the WSJ corpus as well as a subset of1005

500,000 sentences from the Wikipedia corpus. We parsed each sample of sentences from each corpus1006

using the Chen and Manning (2014) dependency parser, and checked each resulting parse for each of the1007

relevant syntactic configurations. The resulting counts are displayed in Table 2. Note that, since the1008

counts were derived from the output of an automatic parser, which may contain errors, they serve only as1009

approximate estimates of the relevant frequencies.1010

One of the largest differences in structural frequency between the two corpora is in the case of disjunct1011

subjects. We see a higher frequency of disjunct subjects in the Wikipedia corpus than in the WSJ Corpus,1012

suggesting that the WSJ Corpus models’ human-like performance in our simulation of Haskell and1013

Macdonald (2005) is not due to more extensive exposure to this construction. Instead, it could be that1014

greater exposure to disjunct subjects leads to more hierarchical representations of disjunct subjects,1015

reflecting the fact that the ordering of disjuncts is unimportant to the interpretation of the sentence. This1016

would, in turn, lead to more consistent verb number responses regardless of the plural disjunct’s position:1017

Since the ordering of disjuncts is more weakly encoded, ordering is less able to influence verb number.1018
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This insensitivity to ordering is in contrast with that of humans, who are biased towards the number of1019

the closer disjunct (Haskell & Macdonald, 2005). The models’ behavior is consistent with traditional1020

structural accounts of coordination where both disjuncts are assumed to be in a symmetric relationship,1021

and as such linear position is irrelevant for operations like agreement (e.g., Williams (1978)). By1022

contrast, a more linear representation of disjunction would lead to more uncertainty as to the number of1023

the verb the model chooses to predict, leading to predictions that vary more severely when the ordering of1024

disjuncts is swapped.1025

The one other notable difference across datasets concerns RCs, which are involved in the other1026

simulation in which the Wikipedia-trained and WSJ-trained models differ in behavior (the simulation of1027

the PP/RC asymmetry in Bock and Cutting 1992). This suggests that our models syntactic behavior is, in1028

fact, affected by the differences in structural frequency between corpora of different genres. Given this1029

pattern of construction frequency impacting syntactic processing behavior, if we aim to replicate the1030

learning conditions of humans, we must acknowledge that the style of Wikipedia and the Wall Street1031

Journal (i.e., formal and edited written text) is likely far different in distribution from what is typical of1032

spoken language or child-directed speech. We will return to this point in the general discussion.1033

What improvements does GPT-2 show relative to LSTM models? We compared our LSTM-based models1034

(LM-ONLY and LM+CCG) to GPT-2, a much larger and more powerful language model. GPT-2 differs1035

from our models in multiple ways: the number of training samples, the number of learned weights, and1036

the models’ architectures. As such, it is difficult to draw conclusions about the sources of the differences1037

in behavior between the GPT-2 and each of our models. We can, however, use GPT-2 to address other1038

questions. In the present work we prioritized an investigation of the qualitative patterns of errors, but a1039

long-term goal of this research program is arguably to also provide a quantitative match to human error1040

patterns. If neural networks’ overall agreement error rates are uniformly much higher than those of1041

humans, this goal is unlikely to be met. Using the stronger GPT-2 model we can ask, first, whether the1042

LSTM models’ high rate of agreement errors is specific to these models, or whether it is a property of1043

neural networks more broadly; and second, if GPT-2’s overall error rates are indeed lower, we can ask if1044

there is there a relationship between overall error rates and the qualitative match between model and1045

human error patterns.1046
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WSJ Wikipedia

count per sentence count per sentence

Sentences 42068 1 500000 1

Subject-Verb relations 64694 1.54 658173 1.32

Number-marked agreement relations 17421 0.41 134362 0.27

RC subject modifiers 1427 0.034 8963 0.018

PP subject modifiers 7519 0.18 76708 0.15

Nested PP subject modifiers 1027 0.024 10091 0.020

Disjunct subjects 96 0.0023 1746 0.0035

Table 2: Counts of relevant syntactic phenomena in the WSJ Corpus and a subset of Wikipedia. Number-

marked agreement relations are those in which a clear number feature is tagged by the parser for both the

head of the subject and verb, and thus can teach the models about agreement. This is not the case in, for

instance, the English past tense, where verbs are not marked for number (the dogs barked and the dog

barked are both grammatical).
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Effect in Humans LM-ONLY LM+CCG GPT-2

Bock and Cutting (1992)

PP > RC x x x

Number Asymmetry X X X

Franck et al. (2002)

Syntactic Distance > Linear Distance x∗ x∗ X

Haskell and Macdonald (2005)

Linear Distance X X X

Humphreys and Bock (2005)

Notional Number x x x

Parker and An (2018)

Core vs Oblique Arguments. x x X

Attraction in Grammatical Sentences X X X

Wagers et al. (2009)

Attraction from outside of RC X X x

Grammaticality Asymmetry X X x

Table 3: A summary of the experiments we simulated and the effects we found within LM-ONLY models,

LM+CCG models and GPT-2. Each column represents whether we found the indicated effect in our

simulations. ∗An effect is found in the LM-ONLY simulation of Franck et al. (2002), but in direction

opposite of the effect found in humans.
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In the PP vs. RC experiment of Bock and Cutting (1992) and the syntactic distance experiment of Franck1047

et al. (2002), GPT-2 did in fact exhibit overall error rates comparable to humans. This indicates that the1048

failure of our models to reach comparable overall error rates is due not to a fundamental issue with neural1049

network models broadly.1050

This leads us to our second question: do more powerful models like GPT-2 always have more human-like1051

error patterns? While this is the outcome we would expect if better overall agreement accuracy was1052

highly correlated with human-like error patterns, the empirical answer to this question appears to be no.1053

In our simulations of Bock and Cutting (1992), Haskell and Macdonald (2005) and Humphreys and Bock1054

(2005), GPT-2’s errors did not match the human error pattern any more than the LSTM-based models1055

did; worse, in our simulation of Wagers et al. (2009), GPT-2 failed to show the grammaticality1056

asymmetry we found in all of our LSTM-based models. At the same time, the error patterns in the1057

remaining two experiments did match the human one more closely. In our simulation of Franck et al.1058

(2002), GPT-2 showed greater attraction effects from syntactically closer attractors than linearly closer1059

ones; and in our simulation of Parker and An (2018), attraction effects were greatly attenuated when1060

attractors appeared in core arguments compared to oblique ones. We see these differences as worthy of1061

further investigation, particularly in light of accounts comparing the mechanisms of transformer-based1062

models such as GPT-2 and the cue-based models of memory retrieval that are posited as explanations of1063

Parker and An’s findings (Merkx & Frank, 2021; Ryu & Lewis, 2021; Timkey & Linzen, 2023).1064

Overall, we find that models with better overall syntactic competence and language modeling1065

performance are not necessarily better matches to human behavioral patterns. This is convergent with1066

prior work indicating that language modeling ability does not predict scores on syntactic benchmarks (Hu1067

et al., 2020) and that performance on those syntactic benchmarks does not correlate with models’ ability1068

to predict human behavioral measures like reading times or eye-movements (E. Wilcox, Gauthier, Hu,1069

Qian, & Levy, 2020). The relationship between language modeling performance and match to human1070

behavioral patterns, however, is still unclear: some work finds that better language models are better1071

matches to human behavior (Merkx & Frank, 2021; E. Wilcox et al., 2020), but others find the inverse1072

relationship (Oh & Schuler, 2023b), with recent work suggesting a tipping point where improvements in1073

language modeling reduce fit to human behavior (Oh & Schuler, 2023a). Given the size and training data1074

available to our models, however, we believe that we are operating far before the tipping point Oh and1075
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Schuler observed. Given this, our evaluation of human error behavior seems to run counter to prior1076

results: We would expect to see that GPT-2 (the better language model) is significantly more human-like1077

than LSTMs, but we find no evidence of this. One explanation of this discrepancy may lie in the1078

difference in the kind of human behavior we and Oh and Schuler seek to account for: While Oh and1079

Schuler attempt to explain broad-coverage human reading times, we attempt to explain patterns of1080

agreement errors in particular.1081

GENERAL DISCUSSION

In this paper we have proposed a framework for employing neural networks as broad-coverage models of1082

human syntactic processing, and have used this framework to compare the errors made by humans in a1083

suite of studies from the English subject-verb agreement processing literature to the errors made by two1084

classes of networks based on the LSTM architecture: first, LM-ONLY models, which were trained solely1085

on word prediction over a text corpus; and second, LM+CCG models, which were trained on word1086

prediction as well as CCG supertagging, a task that requires sophisticated representations of syntactic1087

relationships between words, and thus, we reasoned, should share those sophisticated syntactic1088

representations with the word prediction component.1089

Both classes of models successfully simulated some human results, but failed to simulate others. They1090

were especially unsuccessful in replicating human error patterns that can be attributed to syntactic1091

structure; contrary to our hypothesis, LM+CCG models did not show more sophisticated, human-like1092

syntactic performance than LM-ONLY models, although they did perform in a more human-like manner1093

than LM-ONLY models in some of the simulations that were not directly linked to syntactic structure.1094

Follow-up analyses indicated that training on CCG supertagging may not have required models to learn1095

more sophisticated syntactic representations than learned from next word prediction alone.1096

We also assessed the sensitivity of our results to the training corpus by repeating a subset of our1097

simulations using models with the same architecture as before trained only on 80 million words of1098

English Wikipedia, or only on the approximately one million words of the WSJ Corpus. Models trained1099

on Wikipedia did not consistently exhibit more or less human-like syntactic behavior than models trained1100

only on the much smaller WSJ Corpus subset. However, we do find that when we consider the frequency1101

of the relevant syntactic constructions in each corpus we can explain the differences in agreement1102
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behavior we observe. We take this to indicate that the behaviors our models learn are sensitive to training1103

set size and style.1104

In the sections below, we will discuss these findings and their implications more broadly. We will then1105

consider the potential for the use of neural network language models as cognitive models of syntactic1106

constraints like agreement, as well as the possible pitfalls and best practices that emerge from our1107

experiments.1108

Does adding a pressure toward sophisticated syntactic representations lead to more human-like syntactic1109

performance?1110

As discussed earlier, our experimental results (summarized in Table 4) suggest that the syntactic1111

information used for CCG supertagging only affects agreement attraction patterns modestly, and, counter1112

to our hypotheses, does not help models simulate human behavior in syntactically complex environments.1113

In this section, we will discuss both why supertagging did not impact our models in the way we expected,1114

as well as how we could build models that better capture the syntactic factors modulating agreement1115

processing.1116

Why didn’t supertagging lead to better simulations of syntactic experiments? The error patterns1117

corresponding to the contrasts that are most closely tied to syntactic structure—PP vs. RC (Bock &1118

Cutting, 1992) and linear vs. syntactic distance (Franck et al., 2002)—were not more human-like in1119

LM+CCG than LM-ONLY. We hypothesized that one potential explanation may be that the1120

representations models’ learned during training on CCG supertagging were not those recruited for word1121

prediction during evaluation. To test this, we conducted two analyses to determine whether the parts of1122

our models’ representations that are used for supertagging are necessary for our models’ word prediction1123

performance.1124

The results of these two analyses present a mixed picture. Our ablation analysis found that neurons in1125

LM+CCG models whose removal impacted supertagging performance were also important for word1126

prediction performance, suggesting that representations between tasks overlap significantly. Our amnesic1127

probing analysis, which considered the possibility of distributed representations of syntactic structure,1128

found that removing information useful for supertagging led to a sharp decrease in LM+CCG models’1129
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Effect in Humans LM-ONLY LM+CCG LM+CCG More Human-like?

Bock and Cutting (1992)

PP > RC x No Difference

Number Asymmetry X Larger Effect X

Franck et al. (2002)

Syntactic Distance > Linear Distance x∗ No Difference

Haskell and Macdonald (2005)

Linear Distance X Larger Effect X

Humphreys and Bock (2005)

Notional Number x No Difference

Parker and An (2018)

Core vs Oblique Arguments. x No Difference

Attraction in Grammatical Sentences X Smaller Effect X

Wagers et al. (2009)

Attraction from outside of RC X No Difference

Grammaticality Asymmetry X No Difference

Table 4: A summary of the experiments we simulated using LM-ONLY and LM+CCG models. The LM-ONLY column indicates

whether LM-ONLY models displayed a significant effect in the same direction as the original studies’ authors found, and the LM+CCG

column indicates whether we found a significant interaction between the relevant effect and the addition of CCG supertagging training,

as well as the direction of that interaction. ∗An effect is found in the LM-ONLY simulation of Franck et al. (2002), but in direction

opposite of the effect found in humans.
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word prediction ability, but, crucially, found a similar amount of information useful to supertagging in1130

LM-ONLY models; erasure of that information led to similar decrease in word prediction performance as1131

for LM+CCG models. This suggests that all of the information used for CCG supertagging may emerge1132

from the model’s language modeling component. This recontextualizes the ablation analysis:1133

representations important for supertagging and language modeling are shared only insofar as language1134

modeling representations are sufficient for both tasks.1135

These results, taken together, point toward the inadequacy of CCG supertagging as an auxiliary task for1136

improving the syntactic representations of even simple LSTM language models without explicit syntactic1137

inductive biases. Multi-task training on both word prediction and CCG supertagging fails to create more1138

sophisticated syntactic representations, both in terms of match to human behavior (on the explicitly1139

syntactic agreement phenomena) and in terms of the performance of supertagging classifiers that use1140

those representations.1141

While the auxiliary syntactic objective did not make performance more human-like across the board, it1142

also did not make performance less human-like. In each case, performance either did not change1143

significantly or, in three cases, became more human-like. We take this as evidence that the more1144

human-like behavior of LM+CCG models is not due just to random variation in the optimization1145

process: if that was the case case we would expect changes in either direction with equal likelihood.1146

Thus, despite a lack of significant changes in LM+CCG models’ behavior on the specific, explicitly1147

syntactic tasks we simulated, this pattern of results is consistent with the claim that additional pressure1148

for models to represent syntactic properties of their input leads to more human-like behavior broadly.1149

How can we create models with more human-like syntactic processing? Auxiliary training objectives are, at1150

least in principle, an attractive tool, for a number of reasons: they can be implemented with minimal1151

modification to model architecture; we can verify that the model has encoded the relevant information by1152

monitoring its performance on the objective; and the idea that the representations used in language1153

processing are shaped by the competing needs of various linguistic tasks is cognitively plausible (see, for1154

example, the influence of orthographic pressures on the phonological representations used to detect1155

rhymes, Seidenberg and Tanenhaus 1979). Our negative results suggest, however, that auxiliary training1156
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objectives, or at least the CCG supertagging objective we used, may not be a sufficiently effective tool for1157

aligning the syntactic processing behavior of neural networks and humans.1158

How can we create models whose agreement error patterns show a human-like sensitivity to hierarchical1159

structure? One potential path forward is to increase the sophistication of the syntactic structures that1160

models are pressured to learn. CCG supertagging primarily requires sensitivity to local syntactic1161

structure (i.e., as represented in the way a word combines with adjacent constituents). Models could1162

become more sensitive to larger syntactic context through pressures to construct incremental1163

representations of parse states: Qian et al. (2021), for instance, found that models trained to generate1164

parser action sequences were more successful on syntactic benchmarks than those trained on word1165

prediction and an auxiliary syntactic task (specifically, predicting a window of parser actions that would1166

occur around the parsing of the current word).1167

We can also change the auxiliary task by varying syntactic formalism we use to generate the1168

representations we pressure models to learn. Other syntactic formalisms such as Minimalist Grammars1169

(Stabler, 1997) or Tree-Adjoining Grammars (Joshi, Levy, & Takahashi, 1975) may encode syntactic1170

constraints in a manner that better reflect human processing.1171

As an alternative approach, we could abandon auxiliary training objectives altogether and, instead,1172

consider architectures that condition word prediction more directly on syntactic representations. The1173

Recurrent Neural Network Grammar (Dyer et al., 2016) architecture, for example, acts as a language1174

model, but constructs explicit syntactic parses of its input during processing. This structure encourages1175

the model to learn how best to use the hierarchical information contained in those parses to predict1176

upcoming words. Prior work evaluating the syntactic abilities of these models have found them to be1177

substantially better than LSTMs at predicting measures of processing difficulty in humans (Hale, Dyer,1178

Kuncoro, & Brennan, 2018), and, again, objectives related to modeling parsing explicitly have been1179

shown to lead to better performance on syntactic benchmarks than auxilliary tasks (Qian et al., 2021).1180

Transformer architectures (Vaswani et al., 2017), like the GPT-2 model we evaluated, have also displayed1181

significantly stronger syntactic abilities than LSTMs, particularly when trained on very large datasets (Hu1182

et al., 2020). Transformer-based models have also been argued to implement processes akin to cue-based1183

memory retrieval (Ryu & Lewis, 2021), a mechanism which is widely used to explain phenomena in1184
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agreement processing, as well as sentence processing more broadly (Badecker & Kuminiak, 2007; Lewis,1185

Vasishth, & Dyke, 2006; Parker & An, 2018; Wagers et al., 2009). While our simulations using the1186

transformer-based GPT-2 did not produce error patterns substantially closer to humans than LSTMs, we1187

only explored a single transformer model, and thus a more thorough investigation of transformers — and1188

the inductive biases inherent to that architecture — may show promise. At the very least, transformers1189

such as GPT-2 obtain lower overall error rates than the LSTMs we trained.1190

Do the models learn similar syntactic behavior from different types of training data?1191

In our training data experiments, we found that models trained solely on Wikipedia exhibited more1192

human-like agreement error patterns when tested on PP and RC attractors than those trained on the WSJ1193

Corpus. We also found that models trained on the WSJ Corpus agreed with the closer disjunct much1194

more often than models trained on Wikipedia; in this respect the WSJ Corpus models were closer to1195

human behavior. This pair of findings indicates that models’ syntactic processing behavior, as measured1196

by their error patterns, is sensitive to differences in the size and genre of the models’ training corpus.1197

For the purposes of using neural network language models as cognitive models, this sensitivity to small1198

perturbations in training data is potentially worrying: if models are not sufficiently robust to variation in1199

training data, the particular composition of the training dataset becomes a critical part of our cognitive1200

model’s assumptions. The English Wikipedia corpus, though representative of a particular variant of1201

English, is not representative of either the data observed by a child acquiring language or by the average1202

native speaker. This is also true of the WSJ Corpus, which is composed primarily of financial news1203

articles. There are two major approaches we can take to address this problem: first, we could ensure that1204

models trained for the purposes of cognitive modeling are trained on datasets that closely approximate a1205

child’s input (i.e., the CHILDES child-directed speech corpus; MacWhinney 2000; Yedetore et al. 2023).1206

Alternatively, we could build models with stronger inductive biases that aim to limit the amount of1207

variation that can be caused by the input data. While the supertagging objective may have weakly1208

constrained the types of solutions our models could find during training, stronger architectural inductive1209

biases, like those imposed in models like Recurrent Neural Network Grammars (Dyer et al., 2016), may1210

increase robustness to variation in training data.1211

Which linking function should we use to model agreement processing?1212
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Effect in Humans LM-ONLY WIKI+WSJ LM-ONLY WIKI LM-ONLY WSJ

Bock and Cutting (1992)

PP > RC x x x∗

Number Asymmetry X X x

Franck et al. (2002)

Syntactic Distance > Linear Distance x∗ x∗ x∗

Haskell and Macdonald (2005)

Linear Distance X X X

Table 5: A summary of the experiments we simulated and the effects we found within LM-ONLY models trained solely on Wikipedia

and solely on the Wall Street Journal portion of the WSJ Corpus. ∗An effect is found, but in the opposite direction from humans.
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To turn neural network models into psycholinguistic models of agreement processing in production, we1213

needed a to convert the model’s output to a format that is comparable to the results of human sentence1214

completion experiments. Two approaches to this problem that are distinct from the ONE-SAMPLE linking1215

function we described in the Methods section appear in prior work. Here we contrast our method with1216

these alternatives and provide a psycholinguistic interpretation of one class of potential linking1217

hypotheses.1218

Linzen and Leonard (2018) sidestep this problem altogether by training their neural network as a verb1219

number classifier: the decoder directly predicts the number feature of the verb from the preamble. This1220

technique has two major limitations. First, it requires training data that is annotated with the number and1221

position of the verb. From a cognitive perspective, such annotations are unlikely to be available to human1222

learners; from a practical perspective, it is very costly to produce these annotations manually, and1223

unreliable to do so automatically. The second limitation is that this training method prevents the model1224

from learning syntactic constraints other than agreement, which could be used to better predict agreement1225

patterns. This contrasts with language models, which are incentivized to build representations for any1226

property that might help them predict the next word. Those representations are available to the model1227

when it predicts the verb, and thus the verb’s number. By contrast, the only training signal available to a1228

number classifier is whether or not it predicts the following verb’s number correctly, and thus such a1229

model is not incentivized to build representations for any other linguistic properties, including those that1230

might interact with agreement in agreement attraction contexts.1231

Another common approach was introduced by Linzen et al. (2016), which we will refer to as MAX-PROB.1232

Like our method, MAX-PROB attempts to convert the probabilistic next-word predictions of a language1233

model to agreement behavior. Under this paradigm, a candidate pair of the singular and plural forms of a1234

verb is selected, and the probabilities assigned by the language model to the two forms are compared.1235

The model is evaluated as if it had produced the form whose probability is higher, regardless of the1236

magnitude of the difference between the probabilities of the two forms.1237

The ONE-SAMPLE method we use preserves certain features of MAX-PROB. Like MAX-PROB,1238

ONE-SAMPLE selects a candidate singular/plural pair of verbs (e.g., “write” and “writes”) prior to the1239

selection of the verb’s number feature. This design choice can be seen as reflecting two sequential stages1240

posited by some theories of language production (Bock & Levelt, 1994; Levelt, Roelofs, & Meyer,1241
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1999): first, lemma selection—the selection of the word’s canonical, morphologically unmarked form;1242

and second, grammatical encoding, where grammatical features, like number, are marked. Under this1243

interpretation, the model plus linking function combination presented here aims to capture only the1244

second stage: grammatical encoding.1245

The main difference between MAX-PROB and ONE-SAMPLE is that ONE-SAMPLE selects the output form1246

probabilistically, with the probability of a singular form proportional to the probability assigned to the1247

singular candidate by the language model. This gives ONE-SAMPLE one major advantage over1248

MAX-PROB: it is sensitive to differences in language model probabilities between the singular and plural1249

verb forms, thereby capturing subtle effects that would be obscured if we used the MAX-PROB linking1250

function.1251

Another consequence of using ONE-SAMPLE is that our models exhibit non-deterministic behavior for a1252

particular experimental item. Under MAX-PROB, a model that assigned a probability of 51% to the1253

grammatical form would be taken to consistently produce the correct form of the verb. By contrast, under1254

ONE-SAMPLE such a model would be only slightly above chance at producing the grammatical form of1255

the verb. This is true even when the margin between the correct and incorrect forms’ probabilities is1256

large: a model that assigns 80% probability to the grammatical form would still produce errors in one out1257

of five simulated trials when given the same preamble. This stochasticity better reflects the1258

non-deterministic nature of human agreement errors—we would not expect a participant to always or1259

never make errors on a particular item, but rather make an error on that item with some probability.1260

The difference between MAX-PROB and ONE-SAMPLE can be viewed as a reflection of the1261

competence-performance distinction (Chomsky, 1965). The goal of MAX-PROB-based analyses is to1262

determine whether a model has acquired the linguistic competence of subject-verb agreement (i.e., that1263

the verb should agree with the subject in number). By contrast, our goal is to construct a model that1264

makes the same errors in performance as humans. Thus we use our ONE-SAMPLE method, which models1265

production of a verb as drawing a sample from the probability distribution provided by a language model,1266

rather than the MAX-PROB method. These two linking hypotheses lie at two ends of a spectrum of1267

potential modeling assumptions: under a paradigm where we take n samples from the distribution over1268

the candidate pair provided by our language model and select the form sampled most often,1269

ONE-SAMPLE is the case where we are limited to a single sample, while MAX-PROB matches the1270
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behavior in the limit as n approaches infinity. Future work might explore fitting n to human data, or1271

comparing various choices of n to human behavior under various amounts of time pressure or memory1272

load. For instance, one might expect that under high time pressure, human behavior might match an n1273

closer to 1, while in an untimed proofreading task, behavior might match much higher values of n.1274

Modifications to ONE-SAMPLE may also help bring our models’ error rates more in-line with that of1275

humans. Models based on ONE-SAMPLE will often assign significant probability mass to the form of the1276

verb that the language model judges as less likely, which results in the high agreement error rates we1277

observe in our simulations. This contrasts with MAX-PROB models, which assign no probability mass to1278

the less likely form and thus, as discussed above, are insensitive to the underlying language model’s level1279

of certainty. Selecting a linking hypothesis that lies between these two extremes may lead to the best of1280

both worlds, simultaneously preserving ONE-SAMPLE’s sensitivity and reducing the overall rate of1281

agreement errors. We leave an investigation of alternative linking functions for future work.1282

What can neural networks contribute to the the study of human syntactic processing?1283

Most psycholinguistic modeling, including in the area of agreement processing, adopts a cognitive1284

process modeling approach—models are hand constructed, and consist of a number of interpretable,1285

primitive cognitive operations organized sequentially (Gregg & Simon, 1967); each of these operations1286

may have a small number of parameters that are fit to behavioral data. These models have, as their1287

primary benefit, the ability to implement specific psycholinguistic hypotheses about the phenomena in1288

question.1289

By contrast, neural networks are, on their face, black boxes (McCloskey, 1991). While we can attempt to1290

modulate their behavior by changing their architecture and training task (or tasks), the mechanisms1291

implemented by the model are learned from data during training. For psycholinguists, this is a1292

double-edged sword: it prevents us from testing a specific algorithmic theory like we could with a1293

cognitive process model, but it also allows the model to develop solutions that one may not have1294

otherwise considered. This ability to learn potentially novel solutions from data allows neural network1295

models to be used to evaluate claims in terms of relevant inductive biases or learning pressures. In this1296

work, we asked whether adding explicit pressure toward more sophisticated syntactic representations1297

would lead models to make more human-like agreement errors. By comparing models with and without1298
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that additional pressure, we could address that question, and determine whether strong syntactic1299

representations were sufficient to explain the human patterns of agreement errors. Crucially, this was1300

done without committing to a particular agreement mechanism, and without losing broad coverage: both1301

types of models could be used to simulate agreement in any construction.1302

Another benefit of neural network modeling is that the mechanisms employed by neural networks are1303

necessarily learnable solutions; if our training task is ecologically valid, and our data is comparable to1304

data a human might be exposed to, any solution developed by the model is, given the inductive biases1305

assumed by our model choice, learnable from the input (Rumelhart & McClelland, 1987, among others).1306

This is in contrast to traditional cognitive process models, where it is often unclear how humans come to1307

possess the hypothesized mechanism.1308

The particular learning objective we use involves predicting the next word over large natural corpora.1309

Given the wealth of evidence that humans do something akin to word prediction during sentence1310

processing (for a review, see Kutas, DeLong, and Smith 2011), we take word prediction as a reasonable1311

choice of training task (Elman, 1990). Our training data does, however, present two issues that1312

complicate the analogy to human learning. First, the type of corpora we used—encyclopedia or1313

newspaper articles—are not comparable to the input that children have access to when acquiring1314

language, though they do roughly match the quantity of children’s input: in the tens of millions of words.1315

Future work attempting to strengthen the learning argument could consider using corpora of1316

child-directed speech (i.e., CHILDES, MacWhinney 2000) to evaluate whether less linguistically1317

complex training data leads to similar behavior (Yedetore et al., 2023). The second issue is that we must1318

ensure that the amount of the data our models receive is comparable to that needed by humans to achieve1319

a similar set of behaviors. In the long term, this perspective suggests considering all processing1320

phenomena from the perspective of acquisition: can we construct a model that captures the relevant1321

phenomena at the same stage of “acquisition” as human children?1322

Learnability considerations aside, a critic may still argue that the syntactic processing mechanisms in1323

models like ours learn are still insufficiently explanatory. Because the model’s predictions are generated1324

by a series of ostensibly uninterpretable matrix operations, referring to a neural network model as a1325

model of language processing is merely replacing one black box — a human participant — with another1326

— a neural network. That is, while neural network models can act as instantiations of broad cognitive1327
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principles (i.e., prediction; Goldstein et al. 2022), a critic may argue that those principles are too coarse to1328

act as a proper mechanistic theory. We believe that this problem is not insurmountable. Unlike human1329

participants, the inner workings of a neural network model can be recorded, probed, ablated, and1330

inspected in a variety of other ways with little difficulty and without ethical concerns, allowing1331

researchers to approximate high-level, more easily interpretable operations that are implemented by a1332

particular neural network (see, for example, Elazar et al. 2021; Finlayson et al. 2021; Hupkes, Veldhoen,1333

and Zuidema 2018; Lakretz et al. 2019; Ravfogel, Prasad, Linzen, and Goldberg 2021). While1334

mechanistic explanations of processing do not come for free from neural network models, as they do in1335

more traditional psycholinguistic models, the fact that its possible to analyze their internal computations1336

lends them some transparency.1337

We began by asking what behavior a simple linear sequence learner with no explicit syntactic pressure1338

toward hierarchical syntactic representations exhibits after being trained on word prediction. We then1339

compared this model’s agreement error patterns to a model with an explicit syntactic training objective.1340

Continuing to pursue this approach by analyzing models with stronger and stronger pressures toward1341

sophisticated syntactic representations allows for a bottom-up approach to understanding phenomena like1342

agreement attraction parallel to traditional hypothesis building. First, through this exploration in the1343

hypothesis space, we find the right biases and pressures sufficient for neural models to capture human1344

performance, and then construct specific mechanistic hypotheses about the cognitive processes that give1345

rise to particular behavioral phenomena using neural network analysis techniques. These mechanistic1346

hypotheses then serve to connect the particular innate or external biases and constraints that characterized1347

our neural network model with traditional psycholinguistic models of the representations and processes1348

that govern language processing.1349

How do our results bear on existing accounts of agreement attraction?1350

As discussed in the previous section, we see our neural network modeling approach as complementary to1351

existing symbolic models of agreement attraction errors, and in this work we have sought to model a set1352

of experiments from the literature that motivate a number of existing symbolic approaches to explaining1353

agreement errors. In this section, we will focus on how our results on experiments relate to two accounts1354

of agreement errors, feature percolation and retrieval interference.1355
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Feature Percolation accounts of agreement attraction (Franck et al., 2002, etc.) propose that agreement1356

errors are fundamentally encoding errors: they emerge when the speaker or reader erroneously encodes1357

the wrong number feature on the subject. More specifically, they propose that in sentences that exhibit1358

agreement attraction from subject modifiers, the number feature from a noun in the modifier ”percolates”1359

upward through the sentence’s hierarchical structure to the level of the subject. This contrast with the1360

correct processing of agreement, where it is the number feature of the head of the subject that is expected1361

to percolate to this level. Crucially, these proposals suggest that attraction errors are sensitive to a1362

sentence’s syntactic structure: the rate of attraction errors is expected to be inversely proportional to how1363

far a feature needs to erroneously percolate to cause an attraction error. The experiments from Bock and1364

Cutting (1992) and Franck et al. (2002) we simulated provide evidence for this account: they demonstrate1365

that the syntactic distance between the subject and attractor affects agreement attraction error rates in1366

humans. We find that both our LM-ONLY and LM+CCG models can encode relatively sophisticated1367

syntactic structure, as evidenced by the CCG supertagging accuracy of classifiers trained on their1368

representations, but still fail to replicate the syntactic distance effects found in humans. These results1369

corroborate the importance of tying agreement mechanisms to structural representations: Syntactic1370

distance effects are not simply emergent from the presence of syntactic structure and pressure to learn1371

agreement.1372

By contrast with the Bock and Cutting and Franck et al. experiments, which support the feature1373

percolation accounts, the grammaticality asymmetry result from Wagers et al. (2009) points to the1374

inadequacy of these accounts (though see Hammerly et al. 2019). Wagers et al. instead argue for a1375

retrieval interference model of agreement errors, where agreement errors emerge not from an error in1376

encoding, but rather an error in retrieving the number feature of the subject when the agreement1377

computation is conducted at the verb. Typically, these accounts rely on cue-based retrieval models of1378

memory to predict the frequency of retrieval errors that lead to agreement attraction errors (Badecker &1379

Kuminiak, 2007; Wagers et al., 2009, etc.). Our results demonstrate that the results Wagers et al. found1380

are derivable from LSTMs, suggesting that the encoding-decoding scheme learned by these models1381

represents an alternative or equivalent approach to cue-based retrieval for explaining grammaticality1382

asymmetry effects. Exploration of the encoding schemes used by these models may shed light on1383

alternative accounts of these effects: Lakretz et al. (2021, 2019) find that LSTM models similar to ours1384
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encode number features in a dense, localized manner. These models often encoded number for multiple1385

noun phrases in embedded structures (like those used in Wagers et al. 2009) in a single dimension of the1386

model’s representations, leading to lossy encodings of number whose decoding/retrieval may look fairly1387

different from that in cue-based models.1388

Rather than seeking a neural network alternative to cue-based accounts, Ryu and Lewis (2021) find that1389

the attention mechanisms in models like GPT-2 may implement some principle of cue-based retrieval.1390

Work into comparing the encoding and retrieval mechanisms employed by different neural architectures1391

(i.e., Timkey and Linzen 2023) may serve as fertile ground for exploring the hypothesis space consistent1392

with results like Wagers et al.’s grammaticality asymmetry.1393

Of course, encoding and retrieval based accounts of agreement attraction are not mutually exclusive. For1394

example, Yadav, Smith, Reich, and Vasishth (2023) and find that hybrid models, where errors can be due1395

to either encoding or retrieval, predict human agreement errors better than non-hybrid models. In this1396

sense, our approach can also be seen as a hybrid model, as errors can arise in either stage.1397

CONCLUSION

In this paper, we have proposed a framework for using neural language models to model human syntactic1398

processing, and used that framework to evaluate the ability of a variety of neural language models with1399

different training data and training objectives to simulate results from the agreement attraction literature.1400

We aim to answer three questions: what behaviors arise in LM-ONLY models, which are trained just to1401

predict the next word? Do LM+CCG models, which are provided with explicit syntactic supervision,1402

perform in a more human-like way? Does the size and genre of the models’ training corpus influence1403

syntactic behavior?1404

Our simulations leave us with a few key findings: (1) neural network language models can capture a1405

number of syntactic agreement effects, including linear distance effects, the grammaticality asymmetry1406

and the number asymmetry; (2) much of the syntactic information a model must learn for an auxiliary1407

syntactic task may already be learned from word prediction; and (3) the ability of a language model to1408

capture agreement phenomena is dependent not only on the inductive biases imbued by the models’1409

architecture and pressure from training objectives, but also the size and composition of its training data.1410
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More broadly, we see this work as the first step in constructing a neural network-based approach to1411

modeling and understanding online agreement processing, and human syntactic processing more broadly.1412

Under this approach, we first characterize the biases and pressures necessary for matching human1413

performance, then analyze the behavior and internal representations of such human-like models to1414

generate detailed and testable hypotheses to be tested in humans. Crucially, this “bottom-up” approach is1415

complementary to the cognitive process modeling approaches that are currently standard in1416

psycholinguistics. The issues inherent in cognitive process modeling — determining the learnability of a1417

particular account, as well as determining breadth of the empirical phenomena that account covers — can1418

be addressed by using neural network approaches to generate and test statistically learned hypotheses.1419

The work presented here works toward completing the first stage, helping characterize the biases and1420

pressures on learned representations necessary to match human syntactic processing and evaluating a1421

method for imbuing models with one such bias.1422

ACKNOWLEDGEMENTS

[Anonymized]1423

REFERENCES

Badecker, W., & Kuminiak, F. (2007). Morphology, agreement and working memory retrieval in sentence production:1424

Evidence from gender and case in slovak. Journal of Memory and Language, 56(1), 65–85.1425

Bangalore, S., & Joshi, A. (1999). Supertagging: An approach to almost parsing. Computational Linguistics, 25(2), 237–265.1426

Bender, E. M., & Koller, A. (2020). Climbing towards NLU: On meaning, form, and understanding in the age of data. In1427

Proceedings of 58th Annual Meeting of the Association for Computational Linguistics.1428

Bhatt, G., Bansal, H., Singh, R., & Agarwal, S. (2020, July). How much complexity does an RNN architecture need to learn1429

syntax-sensitive dependencies? In Proceedings of the 58th annual meeting of the association for computational1430

linguistics: Student research workshop (pp. 244–254). Online: Association for Computational Linguistics. doi:1431

10.18653/v1/2020.acl-srw.331432

Bock, K., & Cutting, J. C. (1992). Regulating mental energy: Performance units in language production. Journal of Memory1433

and Language, 31(1), 99–127. doi: 10.1016/0749-596X(92)90007-K1434

Bock, K., & Levelt, W. J. (1994). Language production: Grammatical encoding. Academic Press.1435

–69–

https://doi.org/10.18653/v1/2020.acl-srw.33
https://doi.org/10.1016/0749-596X(92)90007-K


== D R A F T February 5, 2024 ==

Journal: OPEN MIND / Title: Neural Networks as Cognitive Models of the Processing of Syntactic Constraints

Bock, K., & Miller, C. A. (1991). Broken agreement. Cognitive Psychology, 23(1), 45–93. doi:1436

10.1016/0010-0285(91)90003-71437

Bock, K., Nicol, J., & Cutting, J. (1999). The Ties That Bind: Creating Number Agreement in Speech. Journal of Memory1438

and Language, 40(3), 330–346. doi: 10.1006/jmla.1998.26161439

Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V., & Kalai, A. (2016). Man is to Computer Programmer as Woman is to1440

Homemaker? Debiasing Word Embeddings. In Proceedings of the 30th International Conference on Neural1441

Information Processing Systems (p. 4356–4364). Red Hook, NY, USA: Curran Associates Inc.1442

Bruni, E., Tran, N.-K., & Baroni, M. (2014). Multimodal distributional semantics. Journal of Artificial Intelligence Research,1443

49, 1–47.1444

Chen, D., & Manning, C. (2014, October). A fast and accurate dependency parser using neural networks. In Proceedings of1445

the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 740–750). Doha, Qatar:1446

Association for Computational Linguistics. doi: 10.3115/v1/D14-10821447

Chomsky, N. (1965). Aspects of the theory of syntax. MIT Press.1448

Chomsky, N. (1986). Knowledge of Language: Its Nature, Origin, and Use. Bloomsbury Academic.1449

Clark, S. (2002). Supertagging for combinatory categorial grammar. In Proceedings of the Sixth International Workshop on1450

Tree Adjoining Grammar and Related Frameworks (TAG+ 6) (pp. 19–24).1451

Cormack, A., & Smith, N. (2005). What is coordination? Lingua, 115(4), 395–418. doi:1452

https://doi.org/10.1016/j.lingua.2003.09.0081453

Davies, M. (2019). The Corpus of Contemporary American English (COCA). Available online at1454

https://www.english-corpora.org/coca/ .1455

Dyer, C., Kuncoro, A., Ballesteros, M., & Smith, N. A. (2016). Recurrent Neural Network Grammars. In Proceedings of the1456

2016 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human1457

Language Technologies. San Diego, California: Association for Computational Linguistics.1458

Eberhard, K. M. (1999). The accessibility of conceptual number to the processes of subject–verb agreement in English.1459

Journal of Memory and Language, 41(4), 560-578. doi: https://doi.org/10.1006/jmla.1999.26621460

Eberhard, K. M., Cutting, J. C., & Bock, K. (2005). Making Syntax of Sense: Number Agreement in Sentence Production.1461

Psychological Review, 113(3), 531–559. doi: 10.1037/0033-295X.112.3.5311462

Elazar, Y., Ravfogel, S., Jacovi, A., & Goldberg, Y. (2021, 03). Amnesic Probing: Behavioral Explanation with Amnesic1463

Counterfactuals. Transactions of the Association for Computational Linguistics, 9, 160-175. Retrieved from1464

https://doi.org/10.1162/tacl a 00359 doi: 10.1162/tacla003591465

–70–

https://doi.org/10.1016/0010-0285(91)90003-7
https://doi.org/10.1006/jmla.1998.2616
https://doi.org/10.3115/v1/D14-1082
https://doi.org/https://doi.org/10.1016/j.lingua.2003.09.008
https://doi.org/https://doi.org/10.1006/jmla.1999.2662
https://doi.org/10.1037/0033-295X.112.3.531
https://doi.org/10.1162/tacl_a_00359
https://doi.org/10.1162/tacl_a_00359


== D R A F T February 5, 2024 ==

Journal: OPEN MIND / Title: Neural Networks as Cognitive Models of the Processing of Syntactic Constraints

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.1466

Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine learning,1467

7(2), 195–225.1468
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models are learning an abstract agreement mechanism (as opposed to a lexically specific mechanism), we
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should expect our results to generalize to other verbs. In this section, we evaluate that expectation in the

case of our simulation of Bock and Cutting (1992).

To do this, we first collected a set of 557 pairs of singular and plural verb forms that appear in the Wall

Street Journal portion of the Penn Treebank (Marcus et al., 1993), extracted based on their part-of-speech

annotations. We then ran our simulation of Bock and Cutting (1992) using the probabilities of each of

these singular and plural verb forms for each of our LM-ONLY and LM+CCG models trained over the

full WSJ+Wikipedia training set. Results of this analysis averaged over all of these verbs are shown in

Figure A.1.

Part of our motivation for using forms of the verb be in our main analysis was a concern that singular and

plural verb forms with lower frequency may not have their number features well represented in our

models. Given this concern, we extracted the frequencies of the singular forms of our verbs from the

Corpus of Contemporary American English (COCA; Davies 2019). The attraction effect for each verb by

verb frequency is shown in Figure A.2.

A beta mixed-effects regression5 revealed a significant attraction effect (LM+CCG: β = −0.17,

z = −7.89, p < 0.001; LM-ONLY: β = −0.36, z = −18.21, p < 0.001), but no significant interaction

between the attraction effect and whether the modifier was a PP or RC (LM+CCG: β = −0.092,

z = 1.19, p = 0.23; LM-ONLY: β = 0.049, z = 1.70, p = 0.09), matching the conclusions of the

analysis in the main text: models do not capture the PP/RC asymmetry Bock and Cutting (1992) found in

humans. We did find a significant interaction between the attraction effect and the log frequency of the

candidate singular/plural verb pair we used to evaluate agreement, where evaluating with more frequent

verbs led to greater attraction effects (LM+CCG: β = −0.092, z = −28.88; p < 0.001; LM-ONLY:

β = −0.068, z = −23.34, p < 0.001). We also found a significant negative effect of log frequency on

error rates (LM+CCG: β = −0.08; z = −38.01; p < 0.001; LM-ONLY: β = −0.05, z = −25.50,

p < 0.001). These results are consistent with the hypothesis that lower frequency verbs have a less

specified number in our models’ representations, and thus are less sensitive to agreement constraints and

attraction phenomena. However, these results are also consistent with a hypothesis where the agreement

5 Analysis used the model formula as error rate ∼ subj num ∗ attr subj match ∗ pp or rc ∗ log(freq) + (1 | model) + (1 | item)
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Figure A.1: Error rates from our simulations of Bock and Cutting (1992) averaging over 557 singular and

plural verb pairs extracted from the WSJ Corpus.
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Figure A.2: Agreement Attraction effects (Subject-Attractor Mismatch minus Match Error Rates) from

our simulations of Bock and Cutting (1992) for each of the 557 singular and plural verb pairs extracted

from the WSJ Corpus.
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Preamble Prediction Log-Probability

The key to the cabinets... of -1.34

, -2.49

is -2.83

are -3.40

was -3.53

The key to the cabinet... of -1.54

is -2.38

’s -2.68

, -3.03

was -3.17

Figure B.1: Top-5 predictions and their log-probabilities from one of our LM+CCG models

mechanism in our models is sensitive to the agreeing verb’s frequency. We leave further investigation of

these properties, as well as their implications for the modeling of human data, to future work.

B: SAMPLE MODEL PREDICTIONS

In this appendix, we provide the top 5 generations, along with their probabilities, from one of each of our

two primary model classes: LM-ONLY and LM+CCG. Since model perplexities are difficult to compare

given differences in vocabulary and test set, we provide these top-ranked continuations to allow for a

qualitative evaluation of the word-prediction abilities of our models.

C: EDITS TO EXPERIMENTAL ITEMS

The neural network models we train operate on the word level, and depend on the set of words contained

in the models’ training sets in order to learn word-level representations. When a model encounters a word
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Preamble Prediction Log-Probability

The key to the cabinets... was -1.46

of -1.87

is -2.06

, -3.04

and -3.23

The key to the cabinet... is -0.99

was -1.68

, -3.11

of -3.14

’s -3.27

Figure B.2: Top-5 predictions and their log-probabilities from one of our LM+CCG models

it has not seen in training, it uses the representation of a special <UNK> token that replaces words that

appear fewer than five times in the input.

Because most experimental manipulations depend on the features of a particular word, the experimental

materials we use in our simulations must be edited so as to avoid <UNK> tokens preventing the models’

from being able to interpret those features. Below, we will list, for each set of experimental materials, the

changes made to those materials to match the vocabulary of the Wikipedia dataset. Due the the

significant vocabulary limitations of the WSJ Corpus dataset, we provide a full list of the modified items.

Since our goal is to replace rare words, which were excluded from the models’ vocabulary, with words

that the models have observed, the frequency of the new words is necessarily higher than of the words

they replace. We do not control for orthographic properties such as word length, since our LSTM models

treat words as atomic units and thus have no access to those properties.

Modifications to match the Wikipedia Vocabulary
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Bock and Cutting (1992) We identified four subjects or attractors which did not have both their singular

and plural form in our vocabulary. Below, we provide one condition (singular subject, singular attractor,

PP modifier) of the edited items containing each of those noun phrases, with the noun appearing in the

original items shown in parentheses.

(19) The performer (fire-eater) in the carnival show

(20) The inspector (superintendent) of the technical school

(21) The letter (memo) from the junior executive

(22) The lab (laboratory) with the analog computer

In addition, there were 3 words that were not in the Wikipedia training set that were not a part of the

critical manipulation, and thus remained as <UNK> tokens during simulations. We provide example

sentences containing those words below:

(23) The performer who <UNK> (enlivened) the show

(24) The neural zone around the <UNK> (arcturian) solar system

(25) The traffic jam on the <UNK> (Okemos) street

Franck et al. (2002) All of the words used in the experimental materials were within the Wikipedia

vocabulary with one exception, innkeeper. We provide a sample sentence of the item with innkeeper, and

its replacement, inn:

(26) The meal for the guest of the inn (inn-keeper)

Haskell and Macdonald (2005) A sample sentence for each item with changes is listed below:

(27) Ask Ronnie if the pearl (ruby) or the diamonds

(28) Do you remember if the table (dresser) or the beds

(29) Did Naomi say whether the shelf (bookshelf) or the beds

(30) Marcus will tell you whether the pitcher or the pots (teapots)
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(31) Do you remember if the cocktail (martini) or the beers

(32) Find out whether the shovel or the buckets (rakes)

No <UNK> tokens in remained after these changes.

Humphreys and Bock (2005) No words in the Humphreys and Bock (2005) experimental materials were

not in the Wikipedia vocabulary, and thus no modifications were made to the items.

Parker and An (2018) One word critical to the manipulation, stewardess, was replaced as so:

(33) The woman (stewardess) who sat the passengers certainly was very pleased with the long flight.

The adverb unsurprisingly, though not critical to the manipulation, was also not in the vocabulary. An

example sentence with it replaced with an <UNK> token is provided below:

(34) The waitress who sat near the girl <UNK> (unsurprisingly) was unhappy about all the noise.

Wagers et al. (2009) Two words, one critical to the manipulation and one not, were not in the Wikipedia

vocabulary. An example item with both words is shown below:

(35) The vendor who the host (hostess) suggests to their friends are excellent but <UNK>

(outrageously) expensive.

WSJ Corpus Items

Bock and Cutting (1992)

1. The new tape from the popular rock artist

2. The newspaper from the British government agency

3. The performer in the carnival show

4. The bright light in Doctor Smith ’s examination room

5. The security force at the giant manufacturing plant

6. The interview of the famous television host
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7. The popular leader of the left dissident group

8. The teacher for the chemistry student

9. The inspector of the technical school

10. The letter from the junior executive

11. The neutral area around the <UNK> solar system

12. The traffic block on the <UNK> street

13. The office of the certified employee

14. The rebel in the dangerous conflict

15. The actor in the blockbuster film

16. The consultant for the growing firm

17. The teaching aide for the science lab

18. The employee with the diplomat ’s message

19. The star of the <UNK> production

20. The corporation with the banking monopoly

21. The picture of the prominent politician

22. The writer of the modern book

23. The teacher with the special education certificate

24. The member at the union meeting

25. The director of the new motion picture

26. The candidate for the corporate promotion

27. The editor of the history book

28. The lab with the old computer

29. The activist at the political rally

30. The student in the Spanish class

31. The Peace Corps member in the African town

32. The leader of the Roman city state

Franck et al. (2002)
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1. The ad from the office of the real estate agent

2. The announcement by the director of the foundation

3. The article by the writer for the magazine

4. The author of the speech about the city

5. The computer with the program for the experiment

6. The contract for the actor in the film

7. The dog on the path around the lake

8. The friend of the editor of the magazine

9. The gift for the daughter of the tourist

10. The helicopter for the flight over the hill

11. The lesson about the government of the country

12. The letter from the friend of my brother

13. The book by the developer of the machine

14. The chair on the deck of the ship

15. The gift for the guest of the hotel

16. The museum with the picture of the artist

17. The design for the engine of the plane

18. The payment for the service to the school

19. The photo of the girl with the baby

20. The post in the support for the platform

21. The prescription by the doctor from the clinic

22. The producer of the movie about the artist

23. The publisher of the book about the king

24. The setting for the movie about the scientist

25. The sign in the garden near the mansion

26. The switch for the light in the room

27. The message to the friend of the politician

28. The threat to the president of the company
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29. The tour of the garden near the park

30. The train to the city on the lake

31. The truck on the bridge over the stream

32. The discussion about the topic of the paper

Haskell and Macdonald (2005)

1. Can you ask <UNK> if the kids or the adult

2. Do you know if the mice or the monitor

3. Do you think the soybeans or the apple

4. Have you heard whether the teachers or the principal

5. How do I know if the shelves or the floor

6. I <UNK> tell whether the doctors or the professional

7. Do the <UNK> say if the stores or the restaurant

8. We need to know if the potatoes or the grain

9. I want to know if the sheets or the color

10. I need to know if the tables or the chair

11. Maria probably knows if the photos or the painting

12. It didn’t matter to me if the magazines or the book

13. It is hard to tell whether the steelmakers or the engineer

14. Ask <UNK> if the metals or the diamond

15. I wonder if the plants or the fly

16. It doesn’t really matter whether the contractors or the bank

17. Can you tell me whether the swings or the court

18. Do you think the windows or the wall

19. Do you remember if the doors or the carpet

20. Did <UNK> say whether the book shelves or the desk

21. Can you ask the guide if the pencils or the gun

22. Did <UNK> say whether the lights or the plant
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23. Can you tell me if the TVs or the phone call

24. Can you tell me whether the boxes or the can

25. The book must say whether the trails or the river bank

26. Would you say the fax machines or the printer

27. Ask the doctor whether the passengers or the driver

28. Marcus will tell you whether the pipelines or the road

29. Do you remember if the waters or the beer

30. Ask the boss if the cases or the box

31. <UNK> confused about whether the pictures or the prize

32. Do you think the lights or the sign

33. Find out whether the prices or the tax

34. Did you think the teams or the expert

35. Can you find out if the barrels or the package

36. Do you know whether the phones or the camera

37. The board wants to know if the theaters or the coffee shop

38. <UNK> must know whether the book stores or the restaurant

39. Can you tell me whether the brokers or the salesman

40. Tell me whether the boards or the president

D: FULL SENTENCE SURPRISALS FOR COMPREHENSION SIMULATIONS
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Parker and An (2018)

Figure D.1: Word-by-word surprisals for models in our simulation of grammatical materials from Parker

and An (2018). Error bars are standard errors. Since models were given no context prior to the first

word, no surprisal is given for the first word of the sentence (The). Since near only appears in the oblique

argument condition, no surprisal is provided for the token in the core argument condition. The critical

region here is at the verb was/were, where the grammaticality of the agreement relation becomes clear. If

an attraction effect manifests in grammatical sentences, surprisal will be higher in the mismatch condition

than for those in the mismatch condition.
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Wagers et al. (2009)

Figure D.4: Word-by-word surprisals for models in our simulation of sentences with a singular subject

from Wagers et al. (2009). Error bars are standard errors. Since models were given no context prior to the

first word, no surprisal is given for the first word of the sentence (The). The critical region here is at the

verb praise(s), where the grammaticality of the agreement relation becomes clear. If an attraction effect

manifests in grammatical sentences, surprisal will be higher in the mismatch condition than for those in

the mismatch condition. If such an effect manifests in ungrammatical sentences, surprisal will be lower in

the mismatch condition than in the match condition.
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Figure D.2: Simulation Results, Ungrammatical Sentences

Figure D.3: Word-by-word surprisals for models in our simulation of ungrammatical sentences from

Parker and An (2018). Error bars are standard errors. Since models were given no context prior to the first

word, no surprisal is given for the first word of the sentence (The). Since near only appears in the oblique

argument condition, no surprisal is provided for the token in the core argument condition. The critical

region here is at the verb was/were, where the grammaticality of the agreement relation becomes clear.

If such an effect manifests in ungrammatical sentences, surprisal will be lower in the mismatch condition

than in the match condition.
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Figure D.5: Simulation Results, Plural Subject

Figure D.6: Word-by-word surprisals for models in our simulation of sentences with a plural subject from

Wagers et al. (2009). Error bars are standard errors. Since models were given no context prior to the

first word, no surprisal is given for the first word of the sentence (The). The critical region here is at the

verb praise(s), where the grammaticality of the agreement relation becomes clear. If an attraction effect

manifests in grammatical sentences, surprisal will be higher in the mismatch condition than for those in

the mismatch condition. If such an effect manifests in ungrammatical sentences, surprisal will be lower in

the mismatch condition than in the match condition.
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